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       1. Introduction to MITAMS 
 
The Maryland State Highway Administration (SHA) and the Baltimore Metropolitan Council 
(BMC) recognize the value of an integrated, multi-modal, safe, reliable, and efficient 
transportation system to support and sustain economic growth in the region, state and nation. Home 
to 5.8 million people, the State of Maryland is in the center of the eastern seaboard of the United 
States. Within the state’s boundaries is the heavily congested Baltimore-Washington metropolitan 
region. Over time, the dense land use, economic activity, over-saturated conditions and limited 
system expansion capabilities have presented unique mobility, reliability, environmental and 
economic vitality challenges. SHA has coordinated efforts with Maryland Department of 
Transportation (MDOT) and other modal agencies, metropolitan planning organizations (MPOs), 
Federal Highway Association (FHWA), and other agencies and stakeholders to develop 
transportation solutions that address current and future needs. SHA has been working very closely 
with the BMC to develop and advance complimentary tools and applications that support regional 
and statewide transportation decision-making. 
 
Advanced modeling methods and products—such as an integrated advanced travel demand model 
and a fine-grained, time-sensitive network that can operate at statewide, metropolitan, and 
subarea/corridor levels—are required by SHA and BMC to meet agency objectives and address 
various key challenges. With disaggregated data and behavior models, the interactions between 
supply, demand, policy and external factors will be better understood. SHA and BMC perceive 
this FHWA SHRP 2 C10 Implementation Assistance project as a great opportunity towards 
developing a comprehensive data and model improvement program, referred to as the Maryland 
Integrated Travel Analysis Modeling System (MITAMS).  
 
The MITAMS project is composed of integrated, advanced travel demand models with fine-
grained, time-sensitive traffic network models to support agency goals in the areas of planning, 
integrated planning and operations, and transportation systems management and operations 
(TSM&O). MITAMS operates at statewide, metropolitan, and subarea/corridor levels. This project 
leverages previous efforts, such as the Maryland Statewide Transportation Model (MSTM) and 
the BMC InSITE Activity-based Model (ABM). 
 
The Maryland team has developed two integrated models: BMC InSITE-DTALite and SILK 
AgBM-DTALite. The first is the result of integrating a dynamic traffic assignment (DTA) tool 
based on an existing DTALite model that covers the entire State of Maryland, and a state-of-the-
art activity-based model (ABM), InSITE, (developed by Cambridge Systematics for the BMC 
metropolitan area). This integrated model covers most of the urbanized areas in Maryland and will 
support long-range planning, transportation conformity analysis, investment programming, project 
prioritization, equity analysis, and corridor/project planning at both SHA and Baltimore-
Washington MPOs. The second model is an agent-based microsimulation travel demand model 
(AgBM), named SILK (for its emphasis on Search Information, Learning, and Knowledge in the 
travel decision-making process). SILK is funded by the FHWA Exploratory Advanced Research 
Program and developed by the University of Maryland for TSM&O, active traffic management, 
integrated corridor management, and pricing analysis along selected corridors in Maryland. This 
subarea/corridor AgBM-DTA model will be integrated into the Reliability Roadmap and TSM&O 
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Strategic Plan for sustainable future applications at SHA, MPOs, and MPO member jurisdictions. 
This report is divided into four main chapters: (1) Data Assembly; (2) Integrated SILK AgBM-
DTALite Model; (3) Integrated InSITE-DTALite Model; and (4) Outreach and Technology 
Transfer.  
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       2. Data Assembly 
 
This chapter describes the data items available for the MITAMS project in the data hub. The data 
items support the development of the integrated model systems: InSITE-DTALite and AgBM-
DTALite. In addition, the data items support the development of a multi-resolution transportation 
network for multi-scale DTA modeling. Both concepts are discussed in this section. 
 
The data items are categorized as follows:  

• Networks 
o HERE network  
o MSTM planning network  
o MSTM geodatabase network  
o MSTM loaded network  
o 2012 BMC highway network  

 
• Network performance measures 

o INRIX traffic dataset  
o Traffic count data  

 
• Land use  

o Land use data at the SMZ, TAZ, and census block levels  
o 2012 BMC zonal land use data 
o MSTM land use data 

 
• Travel demand models 

o Maryland Statewide Transportation Model (MSTM)  
 

• Trip tables 
o MSTM trip tables 

 
• Traffic control data 

o SHA traffic control data 
 

• Travel Behavior Survey Data 
o 2007/2008 TPB-BMC Household Travel Survey (HHTS) 
o Transit On-Board Survey 
o Regional Air Passenger Travel Survey 
o I-495 Joint SP/RP Departure Time and Lane Choice Survey 
o Mode Search and Switch Memory Recall Survey 
o Maryland Inter-County Connector GPS Survey 
o Multidimensional Travel Behavior Pilot Survey 

 
Each category is described in subsequent sections.  
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2.1 NETWORKS 
 
2.1.1 HERE Network  
The University of Maryland (UMD) acquired the HERE network in GIS format from NOKIA. 
This high definition network provides very high resolution and accurate GIS features of the D.C.-
Baltimore region street network. The main attributes of the network include but are not limited to: 
 

• Number of lanes 
• Speed limit, in miles per hour 
• Travel direction 
• Distance, in miles 
• Presence of tolls 
• Presence of bridge or tunnel 
• Presence of ramp 
• Functional class 

 
2.1.2 MSTM Planning Network  
The Maryland State Highway Administration (SHA) maintains the MSTM planning network in 
GIS format, which is used for the Maryland Statewide Transportation Model (MSTM). The main 
attributes of this network include but are not limited to: 
 

• Distance, in miles 
• Free flow speed, in miles per hour 
• Functional class 
• Initial congested speed, in miles per hour 
• Maximum daily lane capacity divided by 50 (service level “E”) 
• Off-peak toll, in cents 
• Peak toll, in cents 
• Posted speed limit, in miles per hour 
• Route name 

 
Both the HERE network and the MSTM network were prepared and imported to DTALite using 
NEXTA. NEXTA (Network EXplorer for Traffic Analysis) is the tool used to import the GIS 
shape files and attribute tables into the DTALite dynamic traffic assignment simulator. These steps 
are necessary for the development of multi-resolution transportation networks for multi-scale 
DTALite. The research team has access to transit line data from the MSTM planning network, but 
are still working to process and add additional transit data (e.g., Google transit feeds). 
 
 
2.1.3 MSTM Geodatabase Network 
The Maryland State Highway Administration (SHA) maintains this network. It was obtained by 
joining multiple planning networks from the following sources: Baltimore Metropolitan Council 
(BMC), Metropolitan Washington Council of Governments (MWCOG), Delaware Department of 
Transportation (DelDOT) Peninsula Model, and the National Highway Planning Networks 
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(NHPN). This network is the current routable network for the Maryland Statewide Transportation 
Model (MSTM); it is evolving as MSTM is validated.  The geodatabase provides a platform to 
display other spatial datasets in a shapefile format as well.   
 
The network includes all necessary attributes for demand modeling, including number of lanes, 
functional classification, posted speed and link prohibitions. The network has national spatial 
coverage with increased resolution in Maryland. The network attributes cover the following time 
periods: 2012, 2015, 2020, 2025, 2030, 2035, and 2040. 
 
2.1.4 MSTM Loaded Network 
The Maryland State Highway Administration (SHA) maintains this network. It is an output of the 
Maryland Statewide Transportation Model (MSTM) and similar to the MSTM geodatabase 
network. The format of the network is Cube network file. 
 
The network contains traffic volumes on highway links for each of the four time periods: a.m. peak 
period – 6 a.m. to 9 a.m.; MD off-peak period – 9 a.m. to 3 p.m.; p.m. peak period – 3 p.m. to 6 
p.m.; and NT off-peak period – 6 p.m. to 6 a.m. of the following day. It also contains daily 
vehicular volumes. The network accounts for traffic volumes for several vehicle types: autos; 
commercial vehicles; long-distance autos; short-distance single unit trucks; short-distance multi-
unit trucks; and long-distance trucks. The network has national spatial coverage with increased 
resolution in Maryland. The network attributes cover the following time periods: 2012, 2015, 2020, 
2025, 2030, 2035, and 2040. 
 
2.1.5 2012 BMC Highway Network 
The Baltimore Metropolitan Council (BMC) maintains the BMC highway network. The network 
is an input to the InSITE activity-based travel demand model developed by Cambridge Systematics 
(CS). The BMC highway network covers the BMC region, Maryland counties in the Metropolitan 
Washington Council of Governments (MWCOG), and the District of Columbia. The format of the 
BMC highway network is Cube network file. The data is for the year 2012. 
 
The BMC highway network includes but is not limited to the following attributes: 
 

• Functional type 
• Roadway type 
• Area type 
• Managed lanes 
• Toll code 
• HOV limit 
• Speed limit 
• Capacity 
• Free flow speed 
• Number of lanes  
• Truck restriction 

 
The skim data obtained using the highway network as an input to the BMC trip-based model was 
used for estimation of the InSITE travel demand model system. 
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2.2  NETWORK PERFORMANCE MEASURES 
 
2.2.1 INRIX Traffic Dataset 
The University of Maryland (UMD) has access to the INRIX traffic dataset. This data set contains 
real-time and historical travel time data for over 100 million vehicles in more than 32 countries. 
This data is obtained from different sources, such as traffic sensors on the network, local 
transportation authorities, delivery vans, trucks, taxis and users of the INRIX traffic app. This data 
can provide by-the-minute, 24-hour travel time and speed information for certain road segments.  
 
The HERE network for the MITAMS study site (see Figure 1 in the appendix) was integrated with 
the INRIX travel time data using 15-minute intervals. This INRIX dataset will be used to compute 
reliability measures. In addition, the possibility of using this dataset as an input to estimate a logit-
based route choice model for DTALite will be explored. 
 
2.2.2 Traffic Count Data 
The University of Memphis and the Maryland State Highway Administration (SHA) provided this 
data for the project. The data is in both spreadsheet and GIS format. The GIS format contains the 
station locations at the MITAMS study site and the attributes contained in the spreadsheet format, 
which include but are not limited to: 
 

• A: A-node (source node) 
• B: B-node (terminal node) 
• Station: SHA count station ID 
• Direction: directional code 
 0 = North 
 1= East 
 2= South 
 3=West 
• Station_Dir: Text string of Station and Direction joined by an underscore  
• A_B: Text string of A-node & B-node joined by an underscore (for joining centerline 

data) 
• 2012AAWDT: Annual Average Weekday Traffic count (for 24 hours) in the year 2012  

The traffic count data will be used for the calibration of the integrated model systems and the 
validation of the integrated model systems.  
 

2.3  LAND USE 
 
2.3.1 Land Use Data at the SMZ, TAZ, and Census Block Levels  
The University of Memphis and the Maryland State Highway Administration (SHA) provided this 
data for the project. Formatted in GIS, it contains a database of relevant land use information at 
three levels of resolution: statewide modeling zone (SMZ), traffic analysis zone (TAZ), and census 
block. The SMZs are the basis for the MSTM transportation assignment and input land use. They 
nest within counties and are aggregations of existing metropolitan planning organization (MPO) 
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TAZs. The TAZs are the basis for the MSTM transportation model and land use at the urban level. 
The census blocks provide land use datasets with finer detail than TAZs and SMZs. For the 
MITAMS study site, there are 20 SMZs, 48 TAZs, and 688 census blocks. The land use data at 
SMZ, TAZ and census block levels include but are not limited to the following attributes: 
 

• JUR_NAME: Name of the zone’s jurisdiction  
• STFIPS/STATE: State FIPS code (State of MD= 24) 
• STCOFIPS/CNTY2010:  County FIPS code (State of MD = 24001-24510) 
• COUNTYFP10: Last 3 digits of STCOFIPS, referring to the county the TAZ belongs to 
• CENT/SMZ_N: Unique identifier for each statewide model zone (SMZ) 
• BLOCK: Unique identifier for each census block 
• TAZ10: Unique identifier for each traffic analysis zone (TAZ) 
• SQ_MI: Area of the zone (or block) in square miles 
• ACRES: Area of the zone (or block) in acres 
• Emp30Den: Employment density (projected) in the year 2030 
• HH10: Number of households in the year 2010 
• RE10: Number of employment in the retail sector in the year 2010 
• OFF10: Number of employment in the office sector in the year 2010 
• IND10: Number of employment in the industrial sector in the year 2010 
• OFF10: Number of employment in other sectors in the year 2010 
• TOT10: Total number of employment in the year 2010 
• HH40: Number of households in the zone in the year 2040 
• RE10: Number of employment in the retail sector in the year 2040 
• OFF10: Number of employment in the office sector in the year 2040 
• IND10: Number of employment in the industrial sector in the year 2040 
• OFF10: Number of employment in other sectors in the year 2040 
• TOT10: Total number of employment in the year 2040 

The land use data are used as input to the different models in integrated model systems of the 
MITAMS project. 
 
2.3.2 2012 BMC Zonal Land Use Data 
The Baltimore Metropolitan Council (BMC) maintains the BMC zonal land use data. It is an input 
to the InSITE activity-based travel demand model developed by Cambridge Systematics (CS). The 
BMC zonal land use data covers the BMC region, Maryland counties in the Metropolitan 
Washington Council of Governments (MWCOG) and the District of Columbia. The data contains 
2934 traffic analysis zones (TAZ). The format of the BMC zonal land use data is a text file. The 
data is for the year 2012. 
 
The BMC zonal land use data includes but is not limited to the following attributes: 
 

• TAZ  Traffic analysis zone (2934 TAZs) 
• RPD  Regional planning district 
• Tpop  Total population (including group quarters) 
• IGQ  Institutional group quarter population 
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• NIGQ  Non-institutional group quarter population 
• HH  Number of households 
• MedInc TAZ median income 
• Workers Number of workers 
• Emp_Ret Retail employment 
• Emp_Off Office employment 
• Emp_Ind Industrial employment 
• Emp_Edu Educational employment 
• Emp_Hea Health employment 
• Emp_Foo Food employment 
• Emp_oth Other employment 
• Acres  TAZ area in acres 
• TKZones Truck zone (0-12) 
• ENROLL School enrollment (K-12) 
• ZeroAuto Zero auto household (NA for ABM) 
• Jur  Jurisdictions 

 
Land use data were used as inputs for model estimation of the InSITE travel demand model system. 
 
2.3.3 MSTM Land Use Data 
This data was derived from various sources: Metropolitan Washington Council of Governments 
(MWCOG) cooperative forecasts; Baltimore Metropolitan Council (BMC) cooperative forecasts; 
Wilmapci land use projections; Delaware Department of Transportation (DelDOT) Peninsula 
Model; Maryland Department of Planning projections; and a national econometric model. The 
spatial coverage includes the Maryland Statewide Transportation Model (MSTM) modeling 
region, which covers the entire state and at least one county beyond. The unit of the data is at the 
statewide model zone (SMZ) level. The data is available for the years 2012, 2015, 2020, 2025, 
2030, 2035, and 2040. The format of the data is CSV file. 
 
The MSTM land use data includes but is not limited to the following attributes: 
 

• Population 
• Households 
• Office employment 
• Retail employment; 
• Industrial employment 
• Other employment  
• Total employment 
• School enrollment 

 
This data is the socioeconomic input data for the Maryland Statewide Transportation Model 
(MSTM).   
 

2.4  TRAVEL DEMAND MODELS 
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2.4.1 Maryland Statewide Transportation Model (MSTM) 
The Maryland State Highway Administration (SHA) maintains the Maryland Statewide 
Transportation Model (MSTM), and uses it to forecast and analyze performance measures of the 
transportation system at national, statewide and urban levels. MSTM provides comprehensive 
demand modeling and forecasting capabilities in Maryland and beyond that include but are not 
limited to: freight movement; transportation/land use changes; long-range planning; and corridor 
status. MSTM contains the following items: 
 

• Nationwide traffic model: nodes, links, and travel demand 
 

• Maryland state boundary shape file 
 

• Sensor counts and speed data:  
o Zond_id (sensor_id) 
o Direction 
o Latitude 
o Longitude  
o Measurement_start (time)  
o Speed 
o Volume 
o Occupancy 

 
• TMC Speed data:  

o Tmc_code 
o Measurement_stamp 
o Speed 
o Travel_time 
o Direction 
o Start_latitude 
o Start_longitude 
o End_latitude 
o End_longitude 

 
MSTM spatial coverage includes the nationwide traffic network and travel demand, and the 
Maryland statewide sensor data. MSTM temporal coverage includes 24-hour travel demand and 
24-hour sensor data for several links. The MITAMS project may leverage MSTM to provide 
external travel demand trips (e.g., freight trips) that are outside of the demand models in the 
integrated model system as another input to the DTALite. In addition, the sensor and TMC data 
may be used for demand calibration and validation of the integrated model systems. 
 

2.5  TRIP TABLES 
 
2.5.1 MSTM Trip Tables 
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The Maryland State Highway Administration (SHA) maintains this data. It is an output of the 
Maryland Statewide Transportation Model (MSTM).  The tables are available by time period: a.m. 
peak period – 6 a.m. to 9 a.m.; MD off-peak period – 9 a.m. to 3 p.m.; p.m. peak period – 3 p.m. 
to 6 p.m.; and NT off-peak period – 6 p.m. to 6 a.m. of the following day. The tables consist of 
two matrices, one for passenger travel demand (i.e., autos) and one for freight travel demand (i.e., 
trucks). The spatial coverage of the network is at the national level, with increased resolution 
within Maryland. The network attributes cover the following time periods: 2012, 2015, 2020, 
2025, 2030, 2035, and 2040. 
 

2.6  TRAFFIC CONTROL DATA 
 
2.6.1 SHA Traffic Control Data 
The Maryland State Highway Administration (SHA) maintains this data. It originates from the 
SHA’s Office of Traffic and Safety. This traffic control data contains the signal timings and signal 
design plans for each individual traffic controller. This data may be modified as needed to meet 
the changing traffic conditions. The spatial coverage of the data is the entire state of Maryland. It 
should be noted that Montgomery County maintains its own signals. The data format is 
SYNCHRO binary. This data is used for operational analysis and is a required input for calibrating 
base year conditions. 
 

2.7  TRAVEL BEHAVIOR SURVEY DATA 
 
2.7.1 2007/2008 TPB-BMC Household Travel Survey (HHTS) 
The Transportation Planning Board (TPB) conducted this survey in both the Baltimore and 
Washington regions from February 2007 to March 2008, using the same survey designs. The 
survey comprised a combined total of nearly 14,000 households (about 31,000 persons). The 
survey data are organized into three relational databases described as the household file, person 
file and trip file. The data is also geocoded at the traffic analysis zone (TAZ) level. The data are 
formatted as a database. 
 
The data includes but are not limited to the following attributes: 
 

• Household ID number:    Survey ID field  
• Person ID number     Survey ID field 

• Number of persons in household     

• Number of vehicles in household   
• Total household income level   Categorical household income 
• Gender     Male/Female 
• Age       Years 

• Employment status     1=employed full-time, 2=employed    
            part-time, 0=not employed 

• Student status       1=enrolled full-time, 2=enrolled  
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            part-time, 0=not enrolled 
• Type of school enrollment   1=preschool, 2=K-12, 3=post-HS,  

0=not enrolled 
• Relationship to respondent   1=head, spouse, partner, 2=other  

HH member, 3=visitor 
 
The travel survey data are one of the main inputs used for the model estimation of the InSITE 
travel demand model system. 
 
2.7.2 BMC Transit On-Board Survey 
BMC collected transit riders’ data through a survey in 2007. This survey was conducted on board 
transit vehicles, including local, MARC, Metrorail, light rail, and commuter services in the region. 
This survey contains data on the respondent’s current transit trips, including: start and end location; 
trip start time; time spent waiting for the transit vehicle; and access and egress modes. This survey 
also collects socioeconomic characteristics of the respondent such as gender, age, and vehicle 
availability. The usable sample size for the survey is about 13,000 questionnaires. This travel 
survey data was used as an input in the development of the InSITE travel demand model system. 
 
2.7.3 Regional Air Passenger Survey 
The Washington-Baltimore Regional Air Passenger Surveys have been conducted annually since 
1981, and recently, on a biannual basis. The 2011 survey collected responses of about 21,000 air 
passengers at the following airports: Ronald Reagan Washington National; Baltimore/Washington 
International Thurgood Marshall; and Washington Dulles. The questionnaires collect information 
such as: trip purpose; trip origin; trip destination; mode of access; household income; time of day; 
and characteristics of the air passengers. This travel survey data was used as part of a conventional 
four-step travel demand model that was integrated with InSITE. 
 
2.7.4 I-495 Joint SP/RP Departure Time and Lane Choice Survey  
The University of Maryland conducted this joint stated preference (SP) and revealed preference 
(RP) departure time and mode/lane choice survey. It consisted of two waves of data collection, 
gathering a total number of 151 effective samples. The first-wave survey was conducted March 
21-25, 2011, and the second-wave survey, supplemented by carefully designed departure time 
search survey questions, was conducted May 23-27, 2011. 
 
The survey questionnaire consisted of two parts. The first part was a list of RP questions about the 
current travel behavior of respondents and their socio-economic status. The second part contained 
an SP experiment, which used the answers given to the RP questions to determine the values of 
attributes presented to respondents. 
 
In the second wave, a series of carefully designed memory-recall questions were employed to 
gather behavior process data related to the search for alternative departure times. Each respondent 
was asked to recall the order of alternative departure times they had considered and tried, as well 
as the travel conditions corresponding to those departure time choices. 
 
The survey used a simple random sampling method. The population of recruited respondents were 
car drivers traveling on the Capital Beltway in the Washington, D.C. metropolitan area during 
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weekday morning and afternoon peak periods (6:00 a.m.-10:00 a.m., and 3:00 p.m.-7:00 p.m.). 
The research team reached a total of 2,200 drivers during the first-wave data collection period. 
From these, 173 drivers responded to the survey questionnaire, which resulted in a response rate 
of 7.9 percent. Within the 173 responded surveys, 80 of the respondents completed the survey, 
resulting in the effective sample size of 80 observations.  In the second wave, 1,800 drivers were 
intercepted; 131 responded to the web-based survey, resulting in a response rate of 7.3 percent. 
This time, 71 respondents completed the survey. Therefore, the final sample size of the two 
consecutive survey waves totaled 151 observations.  
 
The RP questions collected the driver’s socio-economic information as well as the information 
about their most recent trip using the Capital Beltway. The variables are listed in the following 
table. 
 

Table 2. 1 Variable List 
Variable Description  
Most Recent Trip Variables  
TRIP_PURPOSE 1=Commute, 2=Shopping, 3=Social, 4=Other 
TRAVEL_TIME Travel time (min.) 
DEPART_TIME Departure time (total number of minutes starting from 

midnight) 
DISTANCE Total mileage for the trip (mile) 
FUEL_COST Fuel cost ($) 
PARK_COST Park cost ($) 
TOLL_COST Toll cost ($) 
ENTER_LOCATION The exit where the driver enters the Beltway 
EXIT_LOCATION The exit where the driver exits the Beltway 
SHORTEST_TRIP The shortest experienced travel time for the same travel 

(min.) 
LONGEST_TRIP The longest experienced travel time for the same travel 

(min.) 
TT_MIN_495 The shortest experienced travel time on the Beltway for 

the same travel (min.) 
TT_MAX_495 The longest experienced travel time on the Beltway for 

the same travel (min.) 
 

Socio-economic Variables  
GENDER 1=Male, 0=Female 
AGE  
INCOME 1=less than 50,000, 2=50,000-99,999, 3=100,000-

149,999, 4=more than 150,000 
EDUCATION 1=less than high school, 2=high school graduate, 

3=some college, 4=associate degree, 5=bachelor’s, 
6=graduate 

OCCUPATION 1=work for private company, 2=work for government, 
3=school staff or faculty, 4=student, 5=self-employed, 
6=retired, 7=unemployed, 8=other 
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Variable Description  
WORKERS Number of workers in the household 
CARS_PER_HOUSEHOLD Number of cars in the household 
VEHICLE_SIZE 1=small, 2=medium, 3=large 
VEHICLE_AGE 1=less than 1 year, 2=1-5 years, 3=5-10 years, 4=over 

10 years 
WORK_ZIP The ZIP code of the work location 
PREFER_DEPART Preferred departure time (total number of minutes 

starting from midnight) 
ARRIVE_TIME Actual arrival time (total number of minutes starting 

from midnight) 
PREFER_ARRIVE Preferred arrival time (total number of minutes starting 

from midnight) 
WORK_START_TIME Work start time (total number of minutes starting from 

midnight) 
FLEX_AVAIL 1=work schedule is flexible, 2=otherwise 

 
The SP portion of the survey was designed to explore the decisions that commuters make in 
response to different traffic conditions and pricing schemes. It presented each respondent with two 
stated choice experiments: (1) toll lane usage, and (2) departure time choice. Each experiment 
presented seven scenarios of randomly-generated stated choices on the joint alternatives of 
departure time and lane choice. A typical scenario displayed to the respondents is illustrated in 
Figure 2.1. 
 

 
Figure 2.1 Departure time questionnaire 
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This survey was used in the estimation of the models in the agent-based microsimulation travel 
demand model (AgBM), named SILK (for its emphasis on Search Information, Learning, and 
Knowledge in the travel decision-making process). 
 
2.7.5 Mode Search and Switch Memory Recall Survey 
The average commuter usually tries several travel modes  before figuring out which is the best 
choice. One can understand a person’s mode search and switch behavior by observing their mode 
choice dynamics. To collect such longitudinal data and empirically demonstrate the proposed 
model, a pilot survey was conducted to collect samples from students at the University of 
Maryland. A total of 360 students from the university were solicited for participation in the data 
collection. Among them, 146 respondents completed the survey. This survey was conducted in 
September 2012 and covered approximately three years, from fall 2009 to summer 2012.  The 
observed three-year horizon was divided into six time periods, representing semesters in each 
academic year. This semi-annual precision was chosen because it was accurate enough to record 
long-term commute mode search and decisions for the target subjects; at the same time, this time 
distinction helped maintain a manageable memory-recall burden.  
 
In the survey, each respondent was asked to complete a questionnaire regarding 
household/personal socio-economic and demographic characteristics. This was followed by a 
series of memory-recall questions, employed to reconstruct which travel modes respondents 
employed and/or considered for their commuting trips. First, each respondent was asked to recall 
the time period when she/he arrived at the University of Maryland and, for each time period, which 
mode she/he primarily used to commute. The associated level-of-service information was also 
gathered. Travel cost data for drive-alone and carpool modes were gauged based on trip distance, 
vehicle fuel efficiency, number of passengers and annual parking costs. Then, the respondent was 
asked to recall the most-considered alternative travel mode during that time period. This recall 
process was repeated for each of the time periods to recollect: 
 

• The primary mode of transportation for commuting to the university: This was 
identified as the habitual travel mode for that time period.  

 
• The alternative mode of transportation: This was identified as the alternate travel 

mode most often considered during that time period. If the subject indicated that no 
alternative mode was considered, the alternate travel mode would be recorded the same 
as the habitual mode for the brevity of the analysis. 

 
The following variables were collected from this survey: 
 

• Primary mode for each time period 
• Alternative travel mode 
• Shortest door-to-door travel time (min)  
• Longest door-to-door travel time (min) 
• Transit in-vehicle travel time (min)  
• Transit out-of-vehicle travel time (min)  
• Travel distance (mile) 
• Travel cost ($) 
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• Bus/Metro fare ($)  
• Other costs ($) 
• Number of transfers 

 
This survey was used in the estimation of the models in the agent-based microsimulation travel 
demand model (AgBM), named SILK (for its emphasis on Search Information, Learning, and 
Knowledge in the travel decision-making process). 
 
2.7.6 Maryland Inter-County Connector GPS Survey 
The Maryland Inter-County Connector GPS Survey was conducted from November 16th, 2011 to 
February 6th 2012. The dataset includes 264 individuals and their travel patterns, recorded in one-
minute intervals for the 70-day survey period. After data cleaning, the GPS dataset was translated 
to a trip format, with each trip starting from the origin latitude/longitude, ending with the trip 
destination latitude/longitude, and including each point in between. 
 
The GPS Survey participants were selected as a sample of Prince George’s and Montgomery 
Counties in Maryland. They responded to a postcard campaign soliciting participants in a study 
that records their travel patterns. The postcard led them to a survey website where they completed 
information about themselves (including demographic information and personal driving habits) 
for consideration in the GPS portion of the survey. The total number of individuals to sign up for 
the participation survey was 800 individuals. Of those 800 individuals, 300 were selected in order 
to ensure an accurate representation of the area (Prince George’s and Montgomery County). The 
demographic variables that were considered include household income, age, education, gender, 
race, employment status and marital status. Driving characteristics, such as miles driven on an 
average day and whether they have a valid driver’s license, were also considered in the selection 
process.  
 
The sample size for the GPS dataset is 264 individuals out of the 300 that were initially selected. 
The discrepancy comes from dropouts during the survey, GPS calibration errors, GPS failure and 
user errors. The dataset includes about 1,500,000 minutes of data over the survey span, averaging 
roughly 95 hours of continuous data collection per person. This averages out to one-and-a-half 
hours of travel information per person per day. Depending on the individual, however, the amount 
of data collected varies widely. While all individuals live in the survey area (Prince George’s and 
Montgomery County), everything, including long distance data were collected for the GPS survey; 
therefore, the data occurred in a total of twenty-one states (from Florida to the South, Maine to the 
North, and as far as Kansas to the West). 
 
The GPS data collection method was straightforward. The survey participants were shipped the 
GPS logger with instructions on how to plug it in and turn on the device. Each device was 
previously calibrated by the research team in order to record data at the correct interval and give a 
unique identification number to match the GPS data to the previous survey information 
(demographics and driving behavior). The participants were told to keep the device in their car 
and leave it on for the duration of the survey. During two points during the GPS survey, 
participants were asked to log onto the survey website to complete a more traditional travel survey. 
This online travel survey was used to match locations and purposes to those recorded by the GPS 
device, as well as to serve as a backup that could be used to validate the data during the data 
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cleaning process (pointing possible errors). There were 500 participants who completed a one-day 
online travel that could be used alongside the GPS survey. 
 
Each GPS data point in the survey includes these variables: 
 

• Latitude/Longitude:   Basic location data  
• Date:     Data for when the GPS device was recording  
• Time:     Time for data point (accurate to the second) 
• Heading:    The heading of the device (direction it is pointing)  
• Altitude:    Elevation above sea level (ft.)  
• Speed:    Miles per hour the device is moving  
• HDOP:    Horizontal dilution of precision  
• Number of Satellites:  The number of satellites tracking the position 

 
Added/Calculated variables for each data point: 
 

• Point of Interest Type: GPS data is merged with the OpenStreet map POI. 
• Soak Time:    Time from the end of destination point to the next 

origin point 
• Location Identifier:   Identification number for origin/destination to 

match other points with a similar location  
(within 300 ft.). This way, the user’s home location will 
always have the same Location Identifier number. 

• Distance:    Distance from one point to the next point in a trip. 
 
This survey was used as the estimation of the models in the agent-based microsimulation travel 
demand model (AgBM), named SILK (for its emphasis on Search Information, Learning, and 
Knowledge in the travel decision-making process). 
 
2.7.7 Multidimensional Travel Behavior Pilot Survey 
The University of Maryland conducted a stated adaptation experiment administered online to 
explore possible substitutions to the longitudinal information that is typically missing. This survey 
was conducted in the fall of 2013. This survey method is particularly useful when seeking answers 
from respondents on several what-if questions such as, “what would you do if you were faced with 
specific constraints/conditions.” It helps capture respondents' multi-faceted behavioral responses. 
Furthermore, it has the capability to infer in the procedural decision-making process, which 
embeds the behavioral foundation of the proposed theory and models, since respondents will 
naturally exhibit satisficing behavior if playing the scenarios repeatedly for enough iterations. The 
procedure is reported in Figure 2.2. 
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Figure 2.2 The stated preference experiment flowchart 
 
Beginning with the most recent self-reported trip, exogenous policy/congestion changes are 
assumed in each scenario to alter the travel condition for that trip. It is further assumed that each 
agent will adapt to those changes by searching new modes, departure times, and/or routes. The 
dimensions wherein the behavior adjustment occurs are asked explicitly in the survey for each 
subject. The subject then is asked to present the alternative she/he would identify and search along 
that dimension (this data infers the determination of search rules). Once a search has been recorded 
by a subject, the program will feed a corresponding travel condition simulated in the back-end for 
the subject to consider and make a switching decision between the alternative and the habitual one 
(this data infers the decision rules). Another round of behavior adjustment (which could be in the 
same dimension or in another dimension) will occur unless the subject states satisfaction about the 
travel experience. Iteratively repeating this process, a complete behavioral adjustment sequence of 
each subject can be observed. The pilot study included 110 University of Maryland staff and 
students. They performed adaptations under schemes such as overall congestion increase and road-
pricing scenarios.  
 
This survey was used in the estimation of the models in the agent-based microsimulation travel 
demand model (AgBM), SILK (for its emphasis on Search Information, Learning, and Knowledge 
in the travel decision-making process). 
 

2.8  MULTI-RESOLUTION NETWORK 
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To take advantage of different networks and related data sources, the Maryland team has devised 
a united network based on a common true shape base network that integrates all other related 
networks and data sources. This integrated network would be able to support various modeling 
purposes, from statewide/regional planning models to subarea/corridor level operational models. 
If such an integrated network is built, different agencies can collect and maintain modeling-related 
data in the same network, which makes data sharing and transferring much easier. The major 
challenge of building such an integrated network is determining how to merge two networks with 
all the useful attributes. An intuitive solution would be to overlay the two networks in a geographic 
information system (GIS) software like ArcGIS and utilize some functionalities, like spatial join 
to connect the networks based on spatial relationship. However, this approach would generate a 
lot of errors if the two networks were not perfectly overlaid; researchers would have to visually 
compare the networks to find the errors and manually correct them. Such methods would require 
a lot of time and effort to identify and correct errors, especially for a large area. In addition, it 
would be hard to perform quality control and identify whether all the errors were rectified. 
 
To solve these issues, this paper proposes a network conflation method that can merge two 
networks together with all the useful attributes; usually a planning network and a true shape 
network. Midpoint rectangle buffers are created for each link in the true shape network. Instead of 
directly joining the two networks, the rectangle buffers are merged into the planning network. The 
buffer joint count during the spatial join process can be used to quickly identify and locate the 
errors. The buffer joint count can also be used to quantitatively measure the percentage of errors, 
which can be used for quality control purposes. 
 

 
Figure 2.3 Work flow of the proposed network conflation method 
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The primary goals of the proposed network conflation method are to (1) fully take advantage of 
the built-in GIS functionalities in order to reduce manual work and facilitate the process, and (2) 
to develop a measurement that can be used to quantitatively measure the percentage of errors, 
which can then be used for quality control purposes. To achieve these two goals, the proposed 
method first generates rectangle buffers in the midpoint of each link in the HERE network. Instead 
of directly joining the HERE network with the planning network, the generated midpoint buffers 
are used to spatially join with the planning network. Spatial join refers to a GIS operation that 
transfers attributes from one layer to another based on their spatial relationship. When the rectangle 
buffers spatially join with a network, all the links that intersect with the rectangle buffers will be 
joined to the buffers. The number of planning network links joined to each buffer can be used to 
judge whether the link-to-buffer join is correct. Several link-to-buffer join cases may be found: 
one-to-one join, zero-to-one join and multiple-to-one join. If the buffer is joined with exactly one 
planning network link, which means the joint count equals one for that buffer, the join is considered 
correct. If the buffer joint count is not one, which means either no link is joined with the buffer or 
multiple links are joined with the buffer, an error occurs. The buffer joint count can be used to 
quickly identify and locate buffer spatial join errors for later correction. The buffer joint count can 
also be used for quality control. The percentage of buffers with a joint count not equal to one can 
be considered as the error rate of the network conflation process. As the errors are continuously 
corrected, the error rate will become smaller. When the joint count equals one for all the buffers, 
the network conflation work is considered complete. Figure 2.3 shows the work flow of the 
proposed network conflation method. The final output of the network conflation would be a link-
level correspondence matrix that can be used to merge the networks afterwards. The stopping 
criteria refers to the condition where the joint count equals one for all buffers. Several important 
steps of the method are further explained below: 
 
Step 1. Network filtering for HERE network 
As a true shape network, HERE network covers both major highways and local connectors, while 
the planning network usually only covers the freeways and major arterials. In this step, only HERE 
network links that are covered by the planning network are retained, while the other links are 
masked temporarily. The purpose of this step is to avoid generating unnecessary buffers. 
 
Step 2. Generate midpoint rectangle buffers on HERE network 
For each link in the filtered HERE network, a rectangle buffer perpendicular to the link is generated 
at the midpoint. The buffer width is a fixed value. The height of the rectangle buffers needs to be 
optimized with the planning network during the spatial join process to achieve the lowest error 
rate, which is the percentage of buffers with joint count not equal to one. To achieve the optimized 
height of the rectangle buffers, different buffer heights are tested and the one with the lowest error 
rate is used. After obtaining the optimal value for the buffer size, the midpoint rectangle buffers 
are generated in the filtered HERE network. 
 
Step 3. Spatial join the buffers with the planning network 
After generating the midpoint rectangle buffers in the HERE network, the buffers are spatially 
joined with the planning network and the percentage of buffers with joint count not equal to one 
is calculated. If the joint count equals one for all the buffers, jump to Step 5; otherwise, go to Step 
4. 
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Step 4. Identify and correct the errors of the spatial join 
Identify all the buffers of which the joint count is not equal to one and correct the errors. Various 
methods can be used for error correction, such as adjusting the planning network, adjusting the 
rectangle buffers, etc. Since the goal is to get the link-level correspondence matrix between the 
two networks, it is fine to perform these adjustments if the link ID remains the same. After 
correcting the errors, go back to Step 3 and repeat the steps until the error rate equals zero. 
 
Step 5. Final check 
In this step, check the networks again to make sure there are no additional errors. After that, 
generate the link-level correspondence matrix, which can be used to integrate the planning level 
network and the HERE network. 
 
2.8.1 Maryland Case Study 

(a) Planning network

 

(b) HERE network

 
Figure 2.4 Planning network and HERE network for Maryland study area 

The proposed network conflation method was implemented in the Maryland study area. The 
planning network and HERE network in the study area are shown in Figure 2.4. After testing 
different values, 50 meters was selected as the height for the midpoint rectangle buffers. Several 
rounds of manual adjustment were conducted to correct the errors in the buffer spatial join process. 
Table 2.2 shows the buffer joint count information during each round of spatial join and 
adjustment. As shown in the table, the error rates reduced significantly in the first several rounds, 
which indicates that the marginal benefit reduces as the process is repeated. After eight rounds of 
adjustment, the joint count becomes one for all buffers. The link-level correspondence matrix was 
generated after the final check. 
 
Once the link-level correspondence matrix is created, the HERE network is connected to the 
planning network; all data stored in the planning network can be transferred to the HERE network. 
 

Table 2.2 Summary of the Buffer Joint Count and Error Rate for each Round of Buffer 
Spatial Join 
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Joint Count 0 1 2 3 Sum Error 
Rate 

Round 1 24.9% 64.3% 9.8% 1.1% 100.0% 35.70% 
Round 2 16.2% 72.6% 10.1% 1.1% 100.0% 27.40% 
Round 3 12.7% 76.0% 10.3% 1.0% 100.0% 24.00% 
Round 4 11.0% 79.5% 8.6% 0.9% 100.0% 20.50% 
Round 5 10.2% 80.5% 8.3% 0.9% 100.0% 19.50% 
Round 6 1.7% 96.1% 2.0% 0.1% 100.0% 3.90% 
Round 7 0.1% 99.3% 0.6% 0.0% 100.0% 0.70% 
Round 8 0.0% 100.0% 0.0% 0.0% 100.0% 0.00% 

 
 

2.9  DTALite Model with MSTM 
 
The Maryland Statewide Transportation Model (MSTM) intends to be a multi-layer travel demand 
model representing nationwide, regional, and statewide travel.  Once completed, MSTM will be a 
powerful tool in analyzing transportation movements within Maryland and immediate surrounding 
areas. The boundaries of the network have been established to include all of Maryland, Delaware 
and the District of Columbia, as well as adjacent portions of Virginia, Pennsylvania and West 
Virginia. 

 

 
Figure 2.5 Maryland statewide modeling region 
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The general process follows the steps listed below.  Each step is described in more detail in the 
following section. 

 
Step 1:  A nationwide model is generated in Cube. 

 
Step 2:  The MTSM model is extracted from the nationwide model in Cube, which includes GIS 

traffic network shape files. 
 

Step 3:  All basic network data are imported into NeXTA and converted to the required DTALite 
input format. 

 
Step 4:  The static demand file and time profile provides the required dynamic travel demand 

input, which is converted for processing in the dynamic traffic assignment model. 
 

Step 5:  Through an iterative process in DTALite, simulation results are provided as output, 
including information related to time-dependent link volume, density, speed, etc. 

 

Static Demand File

Time Profile

GIS Traffic Network 

Network Conversion

Demand Conversion

DUE Statewide Running 
(DTALite)

Output Results

Statewide model Cut in CUBE

Nationwide Model Input

Through NeXTA

Statewide Model 
Generation in CUBE

output

 
Figure 2.6 Flow chart showing required steps to build the MSTM in DTALite 

 
2.9.1 Import the Traffic Network 
DTA modeling efforts require high-level representation of transportation system components, 
leading to a more challenging model development process. Preparing networks with the required 
level of detail is one of the most cumbersome steps for DTA planning applications that require a 
specific data format. To assist in this process, Network Explorer for Traffic Analysis (NeXTA) 
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software can be applied as a user-friendly interface and data hub. NeXTA has the ability to convert 
traffic network information from different planning packages into the required data format for 
DTALite. 

To create the MSTM network, a nationwide traffic model was constructed in CUBE and then the 
subarea of interest for the statewide model was extracted (Figure 2.8). Based on the GIS network 
shape files, NeXTA was used to extract the necessary traffic data (such as lane capacity, speed 
limit, link length, number of lanes, from node, to node, link id, etc.) and store them in the following 
CSV formatted files: input_node.csv, input_link.csv, input_zone.csv, and 
input_activity_location.csv. Figure 2.9 presents the converted MSTM traffic network in NeXTA, 
which consists of 21,742 nodes, 54,323 links, and 1,696 zones.  

 
Figure 2.7 Nationwide traffic network for MSTM 
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Figure 2.8 MTSM Statewide model extracted from Cube 

 

 
Figure 2.9. Statewide model imported into NeXTA 

2.9.2 Prepare Time-dependent Origin-Destination Travel Demand 
The MSTM Cube model included 216 statewide origin-destination (OD) trip tables disaggregated 
by purpose, income, mode and time period, and an additional 20 nationwide OD tables for long 
distance truck and auto trips. These trip tables were converted to DTALite format using Cube 
Voyager scripts and were subsequently consolidated with time profiles corresponding to each trip 
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table within a demand metadata file. Time profiles were generated from the 2007 Baltimore-
Washington Region Household Travel Survey data after applying a moving average smoothing 
technique. Time profile data is stored in the following file: input_demand_meta_data.csv. 

2.9.3 Build Toll Settings and Movement Prohibition 
The MSTM model incorporates truck restrictions and toll collections on certain links at specific 
times. It also restricts entry of SOV and truck demand on HOV links. All restrictions and tolling 
can be accomplished in the MTSM model by setting time-dependent toll values in the 
scenario_link_based_toll.csv file, which is shown in Figure 2.10. Links with toll values have the 
word “toll” added. Different restrictions require different settings in the 
scenario_link_based_toll.csv file. Key field names in this file are listed in Table 2.3. 

 

 
Figure 2.10 Link toll visualized in NeXTA. 

Table 2.3 Sample of Settings in Scenario_link_based_toll.csv 

Link 
Start 
Time 
(min) 

End 
Time 
(min) 

Charge for 
LOV ($) 

Charge for 
HOV ($) 

Charge for 
Truck ($) 

Charge for 
Intermodal ($) 

[10855,
15795] 390 570 9999 0 9999 0 

 
For truck restrictions, a large toll value in “Charge for Truck” is added on links based on the 
restriction start and end times. Similarly, for HOV links, a large toll value is added in “Charge for 
LOV” and “Charge for Truck”. For normal toll collection periods, actual toll values appear in the 
corresponding columns. 
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In addition, transit links and walking links are included in the MSTM model. To avoid vehicles 
assigned on those links, users are referred to the “demand_type_code” field in the input_link.csv 
file. For example, the demand type for LOV, HOV and Truck is 1, 2 and 3, respectively. Therefore, 
the “demand_type_code” for transit links and walking links takes a value other than 1, 2 or 3. 

Turning movement restrictions are identified in the AMS_movement.csv file in DTALite, as shown 
in Table 2.4. A turning movement is defined by up_node_id, node_id and dest_node_id; the 
prohibited_flag will be activated when this column has a value of “1”. 

Table 2.4 Sample of Movement Prohibition Settings in AMS_movement.csv 

node_id up_node_id dest_node_id prohibited_flag 
2391 2396 2397 1 

 
2.9.4 Select Traffic Flow Models 
Traffic flow models available in DTALite include BPR function, point queue model, spatial queue 
model and Newell’s kinematic wave model. These models are reviewed in Table 2.5. 

Table 2.5 Unified Capacity-Oriented Modeling Framework (from simplest to complex) 

Traffic Flow 
Model Link Temporal Flow Capacity 

Spatial 
Storage 

Capacity, 
Kjam 

Congestion Propagation 
through Backwave 

Speed, W 

VDF (BPR) 
Considered through 

demand/delay function, but 
allow DV/C >1 

No No 

Point-queue 
Yes (inflow capacity is infinite, 
and outflow capacity is equal to 

link capacity) 
No No 

Spatial-queue 

Yes (inflow capacity is infinite, 
and outflow capacity is equal to 
minimization of link capacity 

and storage capacity of 
downstream link) 

Yes Yes 

Newell’s 
Kinematic 

Wave Model 

Yes 
(inflow capacity is equal to 
outflow capacity under free-

flow traffic state for each link) 

Yes 

Yes, shock wave 
propagation through Kjam 

and backward wave w 
(applied on freeways 

only) 
 
As part of this project, two traffic flow models have been evaluated: BPR function-based model 
and point queue model. With a BPR function-based model, the assigned traffic volume on a link 
is permitted to exceed its capacity, so there is no queue spillback and no propagation captured 
using this model. Therefore, for DTA models, the use of the BPR function is only preferred in the 
case of very large models because of their complexity; a general result can be obtained for further 
analysis and for application of more complicated traffic flow models. With a point queue model, 
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the inflow capacity on a link is infinite and the outflow capacity becomes the only constraint to 
capture the effect of traffic congestion at major bottlenecks. Figure 2.11 represents a point queue 
represented as a vertical stack queue of vehicles, where some of the vehicles are mapped or 
“rotated” from the physical link (shaded) to the vertical stack queue.  

 

 
Figure 2.11 Point queue model represented as a vertical stack queue. 

2.9.5 Collect Sensor Data 
Traffic count data are also required for model calibration and validation. These hourly data were 
obtained from the MSHA (Maryland State Highway Administration) in 2009 and cover a 24-hour 
period; there are hourly link count data for 1,247 links within the Maryland network. They are 
stored in the sensor_count.csv file. As shown in Figure 2.12, the green small squares represent the 
location of link traffic count sensors within the network. 

 

 
Figure 2.12 Sensor location visualized in NeXTA. 
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2.9.6 Validation of Simulation Results 
MSTM model is run using both BPR function and point queue model in DTALite in order to 
validate simulation results with observed data. 

2.9.6.1 BPR Function Simulation Results 
Figure 2.13 shows the comparison of simulated hourly link counts and observed hourly link counts 
for 1,247 links within the Maryland statewide traffic network. Its 𝑅𝑅2 is equal to 0.77. In this test, 
seven iterations were performed using a workstation with 192 GB memory and 40 threads running 
at 2.80 GHz. Each iteration took approximately 2 hours and 50 minutes.  

 
Figure 2.13 Simulated link count (BPR function) vs. observed link count. 

2.9.6.2 Point Queue Model Simulation Results 
Figure 2.14 shows the comparison of simulated hourly link counts and observed hourly link counts 
for 1,247 links within Maryland statewide traffic network using the point queue model. Its 𝑅𝑅2is 
equal to 0.78, which is an improvement compared with the result of BPR function. This is because 
the point queue model captures traffic interactions better than the BPR function between time 
intervals. In this test, twenty iterations were performed using a workstation with 192 GB memory 
and 40 threads running at 2.80 GHz. Each iteration took about 2 hours and 20 minutes. 
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Figure 1 Simulated link count (point queue model) vs. observed link count. 

2.9.6.3 Comparison of BPR and Point Queue Model Simulation Results 
Figure 2.15 shows the comparison of simulation results of BPR function and point queue model. 
The 𝑅𝑅2 is 0.96, which indicates that the simulation result of BPR is very close to the results of the 
point queue model. From a computational time perspective, the BPR function is an acceptable 
model for a large-scale traffic network such as MTSM, even though the point queue model 
produces more accurate results. 

 
Figure 2.15 Simulation result comparison of BPR function and point queue model. 

2.9.7 Origin-Destination Matrix Estimation 
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The general origin-destination (OD) demand estimation problem looks to find an estimate of the 
OD demand matrix by effectively utilizing traffic flow observations and other available 
information. The objective in DTALite is to minimize (1) the deviation between observed and 
estimated traffic states and (2) the deviation between aggregated path flows and target OD flows, 
subject to the dynamic user equilibrium (DUE) constraint, which is represented by a gap-function-
based formulation. The general process is described in the following sections. 

2.9.7.1 Prepare Sensor Data 
As mentioned in Section 2.5, 24-hour, hourly link counts data is one key input for OD demand 
estimation. One of difficulties for ODME is the consistency of data format between collection 
format and required simulator input. An example for the format in DTALite is presented in Table 
2.6. The “count_sensor_id” in the sensor_count.csv and input_link.csv files must be consistent for 
proper mapping during ODME. It also requires input for the start and end times of data observation. 

Table 2.6 Sample of Link Count Data in sensor_count.csv 

from_node to_node count_sensor_id start_time_in_min end_time_in_min link_count 
21358 21404 21358->21404 0 60 18 

 
2.9.7.2 Input Settings for ODME in DTALite 
The attributes for ODME are the required input into the input_secenario_settings.csv file. The 
required information is explained in Table 2.7. 
 

TABLE 2.7 Related Attributes in the File input_scenario_settings.csv for ODME 

Data Field Value Notes 

number_of_assignment_days 500 Total iterations (value should be greater than 
ODME start iteration) 

traffic_flow_model 1 

This parameter defines a specific traffic flow 
model used in both assignment and ODME of 
DTALite. The number 1 indicates a point queue 
model in this example. Selection of the spatial and 
Newell’s KW model is also feasible. 

signal_representation_model 0 This parameter defines a specific signal control 
for DTALite. 

traffic_assignment_method 3 Assignment method “3” is dedicated to ODME. 

ODME_start_iteration 20 

Defines the first iterative assignment period for 
ODME to converge to the user equilibrium state 
and further generate a sufficient number of paths 
for path flow adjustment. 

ODME_max_percentage_devia
tion_wrt_hist_demand 30 The maximum percentage of demand deviation 

from base-line dynamic demand. 
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ODME_step_size 0.05 Moving size of each step in the path flow 
adjustment algorithm. 

calibration_data_start_time_in
_min 0 

These parameters specify the time window for 
ODME to use sensor data. Note that, if the sensor 
data is only available between 990 and 1050 mins, 
calibration will be performed only for that time 
period. calibration_data_end_time_in_

min 1440 

 
2.9.7.3 Run the ODME model and Check Simulation Results 
After ensuring all sensor data are correctly prepared, DTALite (64 bit version) runs the simulation, 
which can make use of more than 2 GB RAM (random-access memory). After the simulation is 
complete, the ODME result can be reviewed in the output_summary.csv file. There is one field in 
the file “Age UE gap” that helps judge the user equilibrium (UE) condition before ODME and 
another field are “ODME: r_squared”. It is used as a measure of the deviation between simulated 
results and observed data. 
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       3. Integrated SILK AgBM-DTALite 
 
The objective of this research is to produce an application-ready, integrated transportation model 
that can predict both the changes in travel behavioral adjustments and the dynamics in network 
traffic conditions for a future year or hypothetical scenario. Existing practices that link travel 
demand models and traffic models often follow a sequential approach. Travel demand patterns are 
predicted and then treated as fixed input in traffic assignment or dynamic traffic assignment (DTA) 
models. In addition to a sensitivity to long-term land use and socio-demographic changes, day-to-
day travel demand patterns should also be responsive to traffic conditions. Excessive travel times 
could lead to route changes, departure time adjustment, or even transportation modal shifts. This 
reversible linkage is necessary for an accurate representation of travel behavior, as many traveling 
agents try to improve their travel experience through behavioral changes every day. In return, 
behavioral representation is reflected in traffic dynamics. To achieve this objective, a developed 
agent-based travel behavior model (AgBM) that emphasizes modeling individual searching, 
information learning and knowledge, called SILK (SILK, see Xiong et al. 2015), is employed as 
the travel behavior-modeling tool. Traffic dynamics are simulated using DTALite, a lightweight 
dynamic traffic assignment and simulation engine (Zhou and Taylor, 2014). These two tools are 
integrated together to incorporate day-to-day behavioral adjustments into transportation and traffic 
simulation processes. 
Microscopic traffic simulation models exhibit offer strong advantages in capturing detailed traffic 
dynamics and have been approved in practice as a valuable tool for evaluating corridor capacity 
expansion and traffic operation improvements. Their applications have recently been extended to 
address a broader range of transportation-related issues, including congestion management, 
multimodal corridor improvements, evacuation planning, land use and economic development. 
However, analyzing these issues requires models that can consider travel demand responses to 
traffic management strategies such as peak spreading, modal shifts, and traffic diversions at the 
corridor and regional levels. These travel demand dynamics can be readily addressed by 
activity/agent-based travel demand models (Bhat and Koppelman 1999; Bowman and Ben-Akiva 
2001; Salvini and Miller 2005; Vovsha et al., 2008). On the other hand, agents in demand models 
require traffic conditions and travel experience as inputs for behavioral adjustments. An integration 
of agent-based travel demand models with microscopic traffic simulation models can provide 
researchers with a powerful tool to simulate the complex transportation system and provide 
answers to planning and policy questions.  

Several research efforts have been dedicated to this field. Dia (2002) presents an agent-based 
approach to model dynamic driver behavior under the influence of real-time traffic information. 
For each form of information provided to drivers (e.g., quantitative delay, predictive and 
prescriptive delay), a number of multinomial logit models are developed to determine the factors 
that affect the propensity of the drivers to adjust their travel patterns and to determine the values 
of these factors. Based on these driver behavioral models, and in order to evaluate the impacts of 
providing drivers with travel information, an agent-based traffic simulation tool is developed, 
which applies the belief, desire, and intention (BDI) agent architecture. The feasibility of this 
approach is demonstrated through a case study on the same corridor where the travel behavior 
survey was conducted. Another study that applies the BDI concept is Rossetti et al. (2002). They 
propose an extension to an existing microscopic simulation model called Dynamic Route 
Assignment Combining user Learning and micro-simulation (DRACULA). In this extension, the 
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behavior of agents is represented in terms of mental attitudes that allow them to make decisions 
about route choice and departure time.  

Hao et al. (2010) focus on integration of an activity-based travel demand model, TASHA, with a 
dynamic agent-based traffic simulation model, MATSim. In this study, an iterative process is 
applied for the integration and a series of data conversions are proposed to make this process 
possible. The modeling framework is implemented in the greater Toronto area. Flötteröd et al. 
(2011) is another study that links the demand models to the agent-based traffic simulation. This 
study concentrates on the calibration of demand models in the context of dynamic traffic 
assignment. The calibration simultaneously adjusts the route choice, departure time choice and 
mode choice (car versus no car) of individual travelers by employing a Bayesian framework.  

One existing integration effort that is drawing increased research attention is the use of 
computational process models to represent travel behavior.  These belong to a group of new 
methods that depart from rationality assumptions; they implement learning, adaptations, 
information acquisition, and decision-making efficiently by taking advantage of computer power. 
These models are microsimulations relying on heuristic arguments and imitation of human 
behavior. A large number of real-world or benchmark problems can be analyzed by applying these 
models to simulate numerical results in different set-ups. Examples on the rapidly growing list of 
research in this area include Pendyala et al., (1998), Arentze and Timmermans (2004), Wahba and 
Shalaby (2011), and Auld and Mohammadian (2010). On one hand, these models introduce more 
complex learning, adaptation and behavioral rules, instead of utility maximization. On the other 
hand, multi-agent simulation cannot prove—but only suggest—a certain feature of travel pattern, 
and still assumes sequential decision process when integrating traffic assignment or DTA models. 
Therefore, it requires additional theories to conceptualize the more rigorous behavioral foundation 
and better explain behavior adjustments along multiple choice dimensions (Arentze et al., 2004; 
Pinjari et al., 2011). 

SILK-AgBM is an agent-based travel behavioral model system that emphasizes the role of 
Searching, Information, Learning and Knowledge (SILK). It can be efficiently interfaced with a 
dynamic traffic assignment model. SILK AgBM does not rely on rules extracted from data mining 
to explain behavior, but instead theorizes multidimensional knowledge updating, search 
start/stopping criteria, and search/decision heuristics. These behavioral modules are formulated 
and empirically modeled and integrated in a unified and coherent system. Procedural and dynamic 
behavioral rules are estimated to represent rich behavior in travel mode, departure time, route, and 
en-route diversion choices. They can be enhanced to potentially accommodate real-time decision-
making on the part of the traveler and the driver’s response to network conditions/congestion and 
real-time traveler information (in addition to a host of other dynamic mobility applications and 
active traffic and demand management strategies).  

In this chapter, SILK-AgBM is integrated with a dynamic traffic simulation tool called DTALite. 
Among a number DTA simulators and software packages, DTALite is an open-source mesoscopic 
(i.e., a resolution level that lies between macroscopic and microscopic) DTA simulation package. 
Coupled with a graphic user interface named the Network eXplorer for Traffic Analysis (NeXTA), 
DTALite provides a useful research and educational tool for researchers, students and practitioners 
to model traffic network and to extend research capabilities to cover various applications in traffic 
management and transportation planning. Its open-source nature and computational efficiency 
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ensured by the parallel computing power are among the reasons DTALite was selected in this 
model integration effort.  

3.1 SILK AgBM Model 
 
The theory starts with the definition of artificially intelligent agents and their characteristics. Each 
agent i is treated differently with socio-demographic attributes, personal experience, knowledge, 
and subjective beliefs. At any given time, an agent has a certain level of knowledge about places, 
activities and transport networks in an urban area. This spatial/temporal knowledge can be 
employed to solve various spatial/temporal decision tasks, such as choosing destination, departure 
time or routes. This problem-solving process consists of several procedural steps in the true 
behavioral sense. First, each agent i at a given time period t possesses experiences, denoted as Eit. 
Agents acquire Eit through past searches or through information sources such as Internet, media, 
advanced traffic information system (ATIS), etc. Eit is time-variant as the agent searches and 
accumulates a-priori experiences in the urban transportation network day-by-day. Travel 
experiences with similar payoffs that occur routinely may reinforce the agent’s memory, while the 
travel experiences that are not representative may be easily forgotten (Arentze and Timmermans, 
2003). Moreover, agents are assumed to be able to search information about one behavioral 
adjustment dimension at a time; for example, agents may search for an alternative route or search 
for an alternative travel mode. Thus, each past experience can be mapped into one single dimension 
d and form a multidimensional memory space Md.   
 
The memory space keeps updating, alters the aspiration level, and changes subjective beliefs d

itP . 
Therefore, an agent determines the expected gain gdt from a search for alternatives in each 
behavioral dimension d based on his/her subjective beliefs. Information acquisition and other 
mental efforts are explicitly modeled as perceived search cost scdi when agents are searching for 
alternatives for each behavioral dimension. These search cost variables are recognized in this 
theory as inconveniences and risks associated with each behavior adjustment dimension. It is the 
interplay of these subjective search gains and costs that jointly determines when a search for 
alternatives in dimension d is initiated or stopped in time period t. Although the subjective search 
gain is defined by an individual’s beliefs and therefore can be quantitatively derived, it is much 
more difficult to theoretically determine the magnitude of a perceived search cost that should be 
individually different. Once the multidimensional behavioral adjustment evidences can be 
observed, the perceived search cost and its relations with other variables can be empirically 
derived.  
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Figure 3.1 Conceptualization of multidimensional travel decision-making theory 
 
If an agent decides not to search in a dimension, habitual behavior in that dimension is executed. 
Otherwise, the agent will employ a set of search rules to search from her/his knowledge and 
identify a new alternative. After identifying an alternative, she/he needs to determine whether or 
not to switch to that alternative. The decision rules constitute a mapping from spatial/temporal 
knowledge (especially experienced travel conditions corresponding to different alternatives) to a 
binary decision: switch to the alternative or retain habit. Both the search rules and the decision 
rules should be empirically estimated from observed search processes. 
 
3.1.1 Modeling Imperfect Knowledge 
Search, learning and knowledge play a crucial role in decision-making. A rational person will 
choose the best alternative from a set of feasible alternatives. The term “rationality” would also 
require that this rational person holds the knowledge that is derived from coherent inferences. In 
contrast, more realistic models are intended to allow modelers to construct agents who 
systematically do not possess perfect knowledge and who do not make correct inferences, but 
rather, biased ones. 
An agent explores decision opportunities by searching her/his feasible environment and learns 
knowledge about various payoffs related to the search and decisions. Here the spatial/temporal 
knowledge is generalized as multidimensional vectors with each vector corresponding to a 
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particular dimension. Assume that each agent i at any given time period t possesses a list of past 
experiences, Eit. Each experience is characterized by a generalized cost: 

 E n n
n

C λψ=∑
 

(1) 

 
Where n denotes the index of different related attributes such as travel time, cost, schedule delays, 
mode comfort, etc.; ψ  denotes the vector of attributes; and λ  denotes the coefficient to translate 
values into monetary costs (e.g., value of time). This generalized cost is adopted to measure the 
outcome of each experience and to set an anchoring point for the search model. Assuming that in 
each behavioral dimension d, an individual’s perceptual capabilities allow the separation of 
generalized cost into a number of categories. If CE that falls into the generalized-cost category j 
has been observed mj times in prior experiences, the memory this individual has about the 
generalized cost in dimension d is fully described by a vector Md = (m1, ..., mj, ..., mJ). Individuals 
update memory space through learning and forgetting processes. Bayesian learning relies on the 
premise of some prior knowledge. When new information from various sources becomes available, 
learning occurs and obeys the Bayes’ rule. Forgetting relies on the cognitive weighting of each 
past experience, which can be measured as a function of the recentness and representativeness of 
the experience (Arentze and Timmermans, 2003). Once the weight is lower than a certain threshold 
parameter, the experience will be eliminated from Eit.  
 
Bayesian learning theory relies on the premise of some prior memory ( M ). When new evidence 
( e ) from various information sources is available, learning occurs and follows Bayes theorem. In 
other words, the posterior memory is updated using conditional probabilities: 
( ) ( ) ( ) ( )| | /P M e P e M P M P e= ⋅   (this equation can also be expressed as posterior = likelihood · 

prior / evidence). When a new alternative in this dimension is experienced and the associated 
generalized cost falls into category j, the updated memory becomes Md = (m1, …, mj+1, …, mJ). 
Let the vector Pd = (p1, …, pj, …, pJ) represent an individual’s subjective beliefs, where pj is the 
subjective probability that an additional search in dimension d would lead to an alternative with 
jth level of generalized cost. In order to quantitatively link Md and Pd, we assume that individuals’ 
prior beliefs and memory follow a Dirichlet distribution, which is a J-parameter distribution. 
Therefore, the posterior beliefs will also be Dirichlet distributed, since the Dirichlet is the 
conjugate prior to the multinomial distribution (Rothschild, 1974). The probability density 
function is defined as: 
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where N denotes the total number of Md observations and Gamma function ( ) ( )1 !j jm mΓ = −
. 

According to the law of large numbers, as sample size N grows, this assumption asymptotically 
converges to: 

 ( ) j
j

m
p

N
Ε =

 
(3) 

 
Bayesian learning is capable of describing updates of spatial knowledge about the attributes of 
spatial objects, and relations between spatial objectives when repeated observations are available. 
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Travel time on a roadway section, waiting time at a transit station, level of congestion for a specific 
trip during a peak hour, attractiveness of a housing unit in a neighborhood, distance between an 
origin and a destination, proximity of a shopping center to the route from work to home, etc.  
 
3.1.2 Modeling Multidimensional Search 
An individual, based on her/his experience itE and subjective beliefs

d
itP , forms expectations on 

potential gain (search gain) from behavioral adjustments along each dimension. The decision to 
search for a new alternative is based on the interplay of subjective search gain and perceived search 
cost. Let an agent’s generalized cost on the currently used alternative be C. The subjective search 
gain (gd t) is based on subjective beliefs, 

d
itP , and defined as the expected improvement regarding 

generalized cost savings per trip from an additional search: 

 ( )
( )j

dt j j
j C C

g p C C
∀ <

= ⋅ −∑
 

(4) 

 
Where C is the minimum of all experienced generalized costs because individuals can select from 

all tried alternatives in dimension d and pick the one with the lowest costs min

dC . We assume all 
individuals start with a preferred travel pattern. It can be the stabilized travel pattern with an initial 
generalized cost C0. Once a policy/congestion stimulus emerges, travel condition deteriorates. Let 
us further assume that individuals have the initial beliefs that search and switching to another 
alternative will lead to a travel condition as good as their original travel condition C0 , until they 
search and experience otherwise. As the search process proceeds, the subjective probability of 
finding an alternative with C0 after N searches is 1 / (N+1). Therefore, Eq. (4) can be further 
simplified as:  

 min 0

1

d

dt

C C
g

N
−

=
+  

(5) 

 

While C0 remains universal among all dimensions, min

dC , the currently best travel option(s) in 
dimension d, can differ in each dimension d since the search processes in different dimensions 
vary and result in diverse outcomes. The subjective search gain gdt evolves and reflects how much 
value each search can gain based on subjective beliefs. Once gdt is less than or equal to zero, it 
indicates that search along dimension d is no longer worthwhile and the search process will not 
initiate. A positive gdt will asymptotically decrease to zero as the number of searches increases 

and as a better alternative is found ( min

dC  getting increasingly closer to C0).  
 
Furthermore, the theory formulates satisficing behavior that even with positive gains, individuals 
may stop a search once the gain is lower than the perceived search cost. The search and information 
acquisition are no longer free, as this theory recognizes the inconveniences and risks associated 
with each behavior adjustment dimension. This impedance is conceptualized as a search cost for 
each agent and each dimension. Search cost can be perceived and inferred once individuals’ 
searching sequences can be reconstructed using empirical observations collected from survey. The 
empirical data provides evidence about agents’ search and decision processes. Each individual 
follows her/his own path along the three dimensions in reaching the final behavior decisions. When 
it is observed that an individual ends her/his search in dimension d and has searched N times along 
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that dimension for the time being, it infers that the individual satisfices after N rounds of search in 
d. The search cost must be lower than gd,t-1 so that the Nth search is meaningful and rewarding. 

Meanwhile, the search cost must be higher than dtg  so that the (N+1)th search does not occur. Let 
us denote individual i's search cost along dimension d as scdi, which is viewed as an innate personal 
characteristic for individual i. It can be estimated by using the lower and upper bounds: 
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Note that for each individual, only one of the multidimensional recognized search costs can be 
perceived from the empirical data. Therefore, a subsequent regression analysis for all survey 
subjects and all dimensions needs to be estimated in order to empirically model search cost. We 
specify the search cost model in dimension d as: 

 0 1 0 2 3 4 5gender fixedsch purpose income1disc Cβ β β β β β= + + + + + +  
6 7 8 9 10income2 income3 distance peak veh iβ β β β β ε+ + + + +  

(7) 

 
where C0 is the generalized cost for the originally reported travel experience and distance measures 
the mileage that the subject travels. Dummy variables include gender (equals to 1 if the subject is 
female); fixedsch (equals to 1 if the subject has fixed travel schedule); purpose (equals to 1 if the 
trip purpose is work/school); peak (equals to 1 if the travel is in peak-hour periods); and veh (equals 
to 1 if household number of vehicles is greater than 2). Different household annual income levels 
are considered in the model (income1: less than $50,000; income2: $50,000 - 100,000; income3: 
$100,000 - $150,000; income4: $150,000 and above). In our model, C0 is identified as an 
instrumental variable (IV) in order to better incorporate the sufficiently high correlation between 
C0 and other independent variables. We employ the generalized method of moments (GMM) and 
a two-stage least-squares (2SLS) estimator. Denoting the IV as z and the independent variables as 
x, we can estimate parameters β  from the population moment conditions: 

 ( ) 0discΕ − =  z xβ
 (8) 

 
The estimation result is reported in Table 3.1. The search cost is positively related to the initially 
experienced generalized cost of the travel. Lower-income agents have higher search costs along 
the mode dimension. Female agents are more reluctant to search departure times and routes than 
alternative modes. Fixed schedule and traveling during peak-hour increase the search cost for all 
dimensions. Travel distance has a negative impact on search cost; the longer the travel distance, 
the more likely she/he will search for alternatives. The coefficients for trip purpose indicate that 
commuting agents have more incentive to search for alternative modes and departure times. By 
estimating and applying search cost models, one can make personal/household characteristics 
endogenous in the search process and model a diversified and behaviorally rich multidimensional 
search. It helps explain why some travelers may adjust routes first while others may adjust 
departure time first in response to the same stimulus. This feature can potentially provide a rich 
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level of details, especially for policy/social equity analysis, whence measuring the impacts/benefits 
by different socio-economic strata of society is of interest.  
 

Table 3.1 Multidimensional Perceived Search Cost Models (Generalized Method of 
Moments and Instrumental Variable) 

Models: Search Cost 
(d: mode) 

Search Cost 
(d: departure time) 

Search Cost 
(d: route) 

Variables Coefficients (std. err.) Coefficients (std. err.) Coefficients (std. err.) 
Generalized cost C0 0.023 (0.010)*** 0.008 (0.001)*** 0.001 (0.000)*** 
Gender (female) 0.014 (0.088) 0.162 (0.071)** 0.098 (0.046)*** 
Fixed schedule 0.118 (0.065)*** 0.194 (0.080)** 0.115 (0.045)*** 
Purpose (work/school) -0.101 (0.062)* -0.091 (0.056)* 0.098 (0.048)** 
Annual income (< $50k) 0.188 (0.106)* -0.272 (0.201) -0.299 (0.060)*** 
Annual income ($50k-$100k) 0.085 (0.41)** -0.285 (0.203) -0.207 (0.066)*** 
Annual income ($100k-$150k) -0.007 (0.007) -0.542 (0.234)** -0.089 (0.086) 
Travel distance (10 mi) -0.020 (0.003)*** -0.008 (0.001)*** -0.006 (0.000)*** 
Peak-hour travel 0.161 (0.094)* 0.112 (0.062*) 0.010 (0.041) 
Number of Cars (> 2) -0.088 (0.021)*** 0.298 (0.092)*** -0.035 (0.053) 
Constant 1.341 (0.148)*** 0.402 (0.225)* 0.384 (0.068)*** 

*, **, *** - significant at 90%, 95%, 99% confidence level 
 
It is hypothesized that agents will search the most rewarding dimension with the highest search 
gain/cost ratio. Consecutive unrewarding searches along a particular behavioral adjustment 
dimension (e.g., route) will lead to diminishing subjective search gain for that dimension and, at a 
later point, cause the search to shift to a different behavior dimension (e.g., departure time). Once 
the ratios for all dimensions drop down below one, the multidimensional search process ceases. 
Since gdt is monotonically decreasing and converges to zero, the search is guaranteed to reach 
stability. The interplay of these search gains and costs along all feasible behavioral dimensions 
defines the bounded rationality embedded in the theory. It collectively determines the prospects 
for profitable searches over finite horizon and guarantees a convergence of behavioral changes. It 
quantitatively theorizes when individuals start seeking behavioral changes, how they initially 
change behavior, how they switch behavioral adjustment dimensions, and when they stop the 
search.  
 
3.1.3 Modeling Search and Decision Rules 
An agent will keep the status quo and repeat her/his habitual behavior once she/he decides not to 
search in any dimension. Once an agent determines a dimension to search, a search process is 
invoked to find useful alternatives to meet travel demand. A spatial/temporal search is not random 
and can be biased (Humphreys and Whitelaw 1979). For instance, if a person currently departs at 
8 AM and is not satisfied with the resulting travel and/or schedule delay, the person is more likely 
to try departing at 7:30 AM or 8:30 AM than at 7 AM or 9 AM (i.e., an anchor effect). Different 
knowledge-extracting technologies can be applied to mine individuals’ search rules and decision 
rules. Here, we adopt production rules for shorter-term departure time search and route search. For 
longer-term travel mode search, the process of identifying an alternative mode is theorized as a 
hidden Markov process.  
 
Production rules provide a roadmap from a variety of arguments (i.e., travel time, cost, socio-
economic characteristics) to the behavioral outcomes (i.e., searching alternatives and decisions). 
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The mapping arguments are denoted as argi and the behavior response alternatives as Aj. One 
typical heuristic rule set can be described as follows: 
 
 { } { } { }1 1 1

1 1 2 2 1Rule 1: if arg arg arg , then choose m mS S S A∈ ∩ ∈ ∩ ∩ ∈
 (9-a) 

 { } { } { }1 12 2 22 2 2Rule 2: if arg arg arg , then choose m mS S S A∈ ∩ ∈ ∩ ∩ ∈  (9-b) 
  

 { } { } { }1 1 2 2Rule : if arg arg arg , then choose n n m mn nn S S S A∈ ∩ ∈ ∩ ∩ ∈  (9-c) 
 
Without loss of generality, assume the model considers m mapping arguments and n heuristic rules. 
Then, argi represents the i the argument in the mapping; j

iS represents a subspace of the entire 
space domain of the argument i (denoted as Si) for the Rule j (i = 1, 2, ..., m; j = 1, 2, ..., n). This 
entire space domain is split in a way that the rule set is capable of responding to all combinations 
of argi (i = 1, 2, ..., m). At the same time, each combination of arguments has only one 
corresponding heuristic rule. This condition can be formulated as: 
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Subjects' actual departure time-changing behaviors under uncertainty are observed from the 
departure time survey, where a specific travel time duration with unexpected delay is given to each 
respondent in each stated-preference (SP) scenario. This allows the research team to extract 
decision rules under uncertainty with machine-learning algorithms. Different machine-learning 
algorithms are applied to derive these heuristic rules. The team has tested four proven algorithms, 
including C4.5 (Quinlan, 1986), PRISM (Cendrowska, 1987), RIPPER (Cohen, 1995), and PART 
(Frank et al. 1998). The C4.5 algorithm seeks an attribute to split on; it maximizes the separation 
between classes in each step of developing a rule set, based on information gain ratios. The PRISM 
(Programming in Statistical Modeling) algorithm optimizes the best combination of attribute 
values based on error ratios. The RIPPER (Repeated Incremental Pruning to Produce Error 
Reduction) algorithm employs a greedy approach with an incremental rule pruning method to 
generate and revise the rule set. PART (partial decision tree) algorithm combines the advantages 
of C4.5 and RIPPER to generate a concise rule set without loss of classification accuracy. The 
empirically derived departure time search (DTS) rule set consists of nine rules, presented below. 
PART estimation is selected based on predictive accuracy of the derived search rules on the 
validation dataset.  
 
Search 60+ min earlier, if 
 [ASDL > 70]        DTS Rule 1 
Search 30-60 min earlier, if 
 [45 < ASDL <= 70]        DTS Rule 2 
Search 0-30 min earlier, if 
 [ASDL > 0 AND Delay > 0]      DTS Rule 3 
Search 0-30 min later, if 
 [0 < ASDL <= 30 AND Delay > 40%]     DTS Rule 4 
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      OR[ASDL <= 10 AND ASDE <= 40 AND Delay <= 50% AND TT <= 65]    
          DTS Rule 5 
Search 30-60 min later, if 
 [ASDL = 0]         DTS Rule 6 
Search 60+ min later, if 
 [ASDE > 75]        DTS Rule 7 
      OR[ASDE > 45 AND Delay > 10%]      DTS Rule 8 
Otherwise, search 0-30 min earlier.      DTS Rule 9 
 
DTS Rule 1 states that individuals will consider shifting their departure times earlier by more than 
one hour if their experienced arrival schedule delay is over 70 minutes. All other rules can be 
similarly interpreted. These rules collectively replicate the heuristics individuals use to identify 
alternative departure times based on their current experiences and knowledge. As knowledge is 
updated during the search process, the same rule set can generate different alternatives for the same 
individual. 
 
Similar to the search rules of an alternative departure time, if-then rules are selected to represent 
route searching heuristics. RIPPER is chosen for its better predictive performance on the dataset. 
The final route search rule set derived from the survey data consists of 16 rules for selecting access 
points and 13 rules for selecting egress points on the basic network. The two rule sets are quite 
similar, and therefore only the rules for selecting access points are shown in disjunctive normal 
forms, where “Δ” denotes changes or percentage changes (Route B attributes – Route A attributes); 
“[ ]” constitutes a complete antecedent condition of the if-then rules; “Time” is the total travel 
time; “Btime” is travel time on the basic network; and “Transfer” is the number of transfers 
between different levels of roads. Route Search (RS) Rules are listed below: 
 
Choose Route A as the alternative route for consideration, if 
[ΔTime = (0.21 ~ infinity)]        RS Rule 1 
Or [ΔTime = (0.13 ~ 0.21) 

And ΔBtime = (–infinity ~ –0.57)]      RS Rule 2 
And ΔBtime = (–0.57 ~ 0.19) 

And ΔTransfer = 0 or 1]      RS Rule 3 
And Time = (30 minutes ~ infinity)]     RS Rule 4 

And ΔBtime = (0.19 ~ infinity) 
And ΔTransfer = 1]       RS Rule 5 

Or [ΔTime = (0.04 ~ 0.13) 
And ΔBtime = (–infinity ~ –0.57)]      RS Rule 6 
And ΔBtime = (–0.57 ~ 0.19) And (ΔTransfer = 0 or 1)]   RS Rule 7 
And ΔBtime = (–0.57 ~ –0.19) And ( Time = (15 ~ 30 minutes)]  RS Rule 8 
And ΔBtime = (0.19 ~ 0.57) And (ΔTransfer = 1)]    RS Rule 9 

Or [ΔTime = (–0.04 ~ 0.04) 
And ΔBtime = (–infinity ~ –0.57)]      RS Rule 10 
And ΔBtime = (–0.57 ~ 0.19) 

And ΔTransfer = 1]       RS Rule 11 
And ΔBtime = (–0.57 ~ –0.19) And (ΔTransfer = 0)]  RS Rule 12 

Or [ΔTime = (–0.21 ~ –0.04) 
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And ΔBtime = (–infinity ~ –0.57)]      RS Rule 13 
And ΔBtime = (–0.57 ~ 0.19) And (ΔTransfer = 1)]    RS Rule 14 
And ΔBtime = (–0.57 ~ –0.19) And (ΔTransfer = 0)]   RS Rule 15 

Otherwise, choose Route B as the alternative route for consideration.  RS Rule 16 
 
For instance, RS Rule 1 suggests that drivers will identify a specific route in a round of searches 
if its travel time is significantly lower (21 percent) than other routes. The execution of this rule 
alone can exclude a large percentage of feasible alternative routes from further considerations. As 
the travel time difference becomes less apparent (RS Rule 2 to 15), other factors related to the 
simplicity of routes—such as the percentage of travel on the basic network and number of transfers 
between different sub-networks—also play an important role. Collectively, these rules replicate 
the heuristics individuals use to identify alternative routes based on their existing spatial 
knowledge. As knowledge changes (e.g., a congested section in the network is learned), the same 
rule set can generate different routes (e.g., a new route bypassing the congested section). Repeated 
executions of these rules in each round of route search produce one alternative route for the 
subsequent decision step. Finally, when used to predict behavior, these rules can be executed as 
deterministic or probabilistic rules (based on their accuracy on the estimation/validation datasets). 
 
Mode search is presented by a hidden Markov method (the main idea is illustrated in Figure 3.2), 
which emphasizes the dynamic linkages between time periods.  
 

 
 

Figure 3.2 A hidden Markov model of travel mode searching dynamics 
 
As displayed in Figure 3.2, two major components are highlighted in this model: 

• Hidden states and transitions: The transition is triggered by the evolving travel experience. 
Starting from an initial state distribution (i.e., at time 1, the probability density function 
Pr(Hi1) that traveler i is in state Hi1), a sequence of Markov chains is employed to express 
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the likelihood that the level-of-service (LOS) experiences of the habitual mode in the 
previous periods are strong enough to transition the traveler to another hidden state Pr(Hit 
| Hit-1). For example, successively experiencing longer waiting time when using transit may 
cause the traveler to switch to an auto-loving state. 

• State-dependent decision rules: Given the hidden state that a traveler i is in, the probability 
that she/he will identify mode yit as the alternative in the mode searching stage at time t is 
determined by Pr(Yit = yit | Hit). Yit is the mode searching decision made by traveler i at 
time t. 

 
An individual's decision probabilities are correlated through the underlying path of the hidden 
states (yi 1, yi 2, ..., yiN) because of the Markovian properties of the model. Therefore, the joint 
likelihood function is given as: 
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(12) 

 
More details of this hidden Markov search model regarding model variables and estimation 
procedure can be found in Xiong and Zhang (2015).  
 
After each search round, a new alternative is identified. Agents either change behavior to use the 
new alternative or stay with their habitual behavior. This is determined by a set of decision rules. 
Even though during the multidimensional search process many alternatives may be visited, the 
final decision is assumed to be the outcome of a series of switching decisions. Production rules 
derived by various machine learning algorithms (Quinlan 1986; Cendrowska 1987; Cohen 1995) 
are selected here to represent decision rules. Departing from random utility maximization, this 
assumption about the search-decision procedure relaxes the unrealistic assumption of human 
information processing and computational capabilities, and incorporates individual-based 
historical dependencies. It also improves the computational efficiency of agent-based simulation 
since the execution of production rules only requires minimum computational resources. These 
search and decision rules are empirically derived for each behavioral dimension. 
 
For departure time choice (DTC), the travel time uncertainty (RANGE) is specified here as the 95 
percent confidence interval of the travel time duration. Other explanatory variables in the decision 
rules include: preferred arrival time (PAT); departure time (DT); preferred departure time (PDT); 
travel time (TIME); monetary cost (COST); household income (INCOME); and gender 
(GENDER). The variable flex is a dummy variable that is equal to 1 if the trip maker’s preferred 
arrival schedule is flexible, and 0 otherwise. ∆ denotes percentage changes of the alternative 
departure time attributes from the attributes of current departure time choice.  
 
Switch to the alternative departure time choice (DTC), if 
[∆RANGE <= -16.7% and ∆TIME <= -15.4%]     DTC Rule 1 
[∆TIME <= -25% and ∆RANGE >= 0%]      DTC Rule 2 
[∆RANGE >= 0% and ∆COST <= -35.2% and flex = 1]     DTC Rule 3 
[∆RANGE <= 0% and INCOME < 150K and -8.3% < ∆COST <= 0% and ∆TIME <= 10%]  
         DTC Rule 4 
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[∆RANGE <= 0% and INCOME < 150K and ∆COST <= -8.3% and ∆ASDL <= 35%]   
         DTC Rule 5 
[-16.7% <= ∆RANGE <= 0% and INCOME <= 50K]    DTC Rule 6 
[∆ASDL <= -38% and ∆RANGE >= 0% and ∆TIME >= 17%]   DTC Rule 7 
[-66.7% <= ∆RANGE <= -16.7% and -4.2% <= ∆COST <= 10%]    DTC Rule 8 
[INCOME <= 50K and GENDER = female and ∆RANGE <= -70%]   DTC Rule 9 
[INCOME <= 50K and flex = 1 and -22.7% <= ∆TIME <= 16.6% and ∆COST <= 20%]   
         DTC Rule 10 
[INCOME <= 100K and GENDER = female and ∆TIME <= 8.3% and ∆RANGE <= -44.4%]  
         DTC Rule 11 
[-21% <= ∆TIME <= -10% and ∆ASDL >= 33% and ∆RANGE <= -40%]  DTC Rule 12 
Otherwise, continue to use the current departure time.     DTC Rule 13 
 
The route changing rules for commute trips derived from machine learning algorithms are present 
below, where Δ denotes changes or percentage changes (new route attributes – current route 
attributes), and absolute values are attributes of the currently used route. 
 
Route choice change (RCC) rules, commute trips 
Change route, if 
[ΔTime ≤ -39%]         RCC Rule 1 
Or [ΔTime ≤ -11% and ΔPleasure ≥ -1]      RCC Rule 2 
Or [ΔFamiliarity ≥ 3 and Commute time ≤ 20 min]     RCC Rule 3 
Or [ΔTime ≤ 6% and ΔPleasure ≥ 3]       RCC Rule 4 
Or [ΔTime ≤ 15% and Δ Familiarity ≥ 2 and ΔDelay ≥ -40%]   RCC Rule 5 
Or [Familiarity = 1 and ΔTime ≤ 51% and Commute time ≤ 20 min and Income = 1]  
         RCC Rule 6 
Or [Delay ≥ 4 min and ΔStops ≤ 0 and Commute distance ≤ 8 miles]  RCC Rule 7 
Or [ΔPleasure ≥ 2 and ΔFamiliarity ≥ 0 and Commute time ≤ 16 min]  RCC Rule 8 
Otherwise, continue to use the current route.     RCC Rule 9 
 
A perception threshold exists in route changing behavior. For instance, RCC Rule 1 implies drivers 
will change routes as long as travel time can be reduced by more than 39 percent. Travel time 
reduction less than 11percent is insignificant. Variable “familiarity” is present in several rules, 
which is evidence of historical dependencies in route choice. A comparison shows that the 
predictive performance of the route changing rule set is superior to a normative logit model using 
measures such as hit ratios at the individual level and route flows at the aggregate level (see Zhang 
2006a, b for details). 
 
Decision tree (DT) is used to explore the underlying rules of travelers’ travel mode decision 
between the habitual mode and the newly identified alternative mode. This section proposes a DT 
induction method which can efficiently handle the class imbalance issues. A longitudinal travel 
survey is a good method for exploring the rules of people’s model switching behavior, by 
observing people’s mode shift behavior and using that data to build mode switching model. 
However, this type of data is relatively hard to collect. In this study, Household Travel Survey data 
(which is much easier to obtain) is used to generate mode switching decision tree models and to 
show the benefits of proposed method.   
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Figure 3.3 shows the analysis algorithm proposed in this study. Data used in this study include the 
2007/2008 TPB Household Travel Survey and Zone-to-zone Travel Time Skimming Matrices 
which, together, provide the trip and socio-demographic information necessary for mode choice 
analysis. After preprocessing, the two data sets are integrated to a single file and then randomly 
separate into two parts: training data set and test data set. Mode switching models are then built 
using training data set by the proposed DT induction method, which includes three steps: loss 
matrix selection, attribute selection and DT induction. Loss matrix is introduced to handle the class 
imbalance issues. Attribute selection is implemented to select a subset of relevant features for 
model construction. Ten-fold cross validation is used as a goodness-of-fit in loss matrix selection 
and attribute selection. Then, the mode switching models are validated with the test data set.   
 
The key procedures of the DT induction method, loss matrix selection, attribute selection and DT 
induction will be discussed in the remainder of this section. Data and preprocess are described 
later in the report. 
 

 
 

Figure 3.3 Mode choice decision tree analysis procedure 
 
Ten explanatory variables are assumed to have significant effects on travelers’ mode choice 
behavior, representing the characteristics of three categories: household properties, personal 
attributes and trip characteristics. Household properties include: housing tenure (TENURE) which 
includes owned, rented; household income (INCOME) which is divided into four cohorts; and 
number of vehicles (VEH) and bikes (BIKES) in the household, which takes value as 0, 1, 2 or 3+. 
Personal attributes contain age (AGE), employment (EMPLY) and driver license ownership (LIC). 
Trip characteristics are travel time (TT), trip distance (DIST) and trip purpose (PURP). Trip 
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purpose includes home, work, shop, school, passenger drop off/ pick up and other.  Except for the 
model between driving and passenger, a new variable, unit travel time difference (∆TIME,

), is defined to show the difference in the level of service between two 
modes, which also helps alleviate the fragmentation problem. Data cleaning is then applied to 
remove incomplete data. The explanatory variables are shown in Table 3. 2. 
 

Table 3.2 Explanatory Variables 
 

Variable Definitions Values 
TENURE Housing tenure 1 =Owned; 2 =Rented 

INCOM Household income 1=Less than $50,000; 2=$50,000 -$99,999; 3=$100,000 -
$149,999; 4 =$150,000 or more 

VEH Number of vehicles in the household 0 = 0; 1 = 1; 2 = 2; 3 = 3+ 
BIKES Number of bicycles in the household 0 = 0; 1 = 1; 2 = 2; 3 = 3+ 

AGE Age group 0 =  0-4; 1 = 5-15; 2 = 16-18; 3 = 19-24; 4 = 25-34; 5 = 35-
44; 6 = 45-54; 7 = 55-64; 8 = 65-74; 9 = 75+ 

EMPLY Currently employed? 1=YES; 2=NO; -9 = Not Applicable 
LIC Have driver license?(Persons 16+) 1=YES; 2=NO; -9 = Not Applicable 

∆TIME Difference in travel time divided by 
distance Continuous (min/mile) 

TT Reported travel time Continuous (min) 

DIST Estimated trip distance  
(Rounded to nearest 0.1 mile) Continuous (mile) 

PURP Trip purpose 01 =  Home; 02 = Work; 04 = Shop; 08 = School; 09 = 
Other; 11 = Passenger Drop off/Pick up  

 
After the pre-process, a total of 72,536 observations are available for model construction. The data 
are then randomly separated in two parts: one contains 80 percent of the data as the training set, 
and the remaining 20 percent as the subsequent validation test set. Table 3.3 shows the composition 
information in different travel modes for the two groups of data. The percentages of the four 
modes, transit, driving, passenger in a car and walk/bike are 7.54 percent, 67.07 percent, 21.53 
percent and 3.86 percent, respectively. It is necessary to apply the loss matrix method to handle 
the huge discrepancy in number of observations between driving and other modes. 
 

Table 3.3 Mode Splits for the Data Set 
 

Mode Total database Training dataset Test data set 
Number % Number % Number % 

Transit 5,467 7.54 4,368 7.53 1,099 7.58 
Driving 48,653 67.07 38,995 67.20 9,658 66.57 
Passenger 15,616 21.53 12,427 21.42 3,189 21.98 
Walk/Bike 2,800 3.86 2,239 3.86 561 3.87 
Sum 72,536 100 58,029 100 14,507 100 

 
 

( )1 2 /TIME TT TT DIST∆ = −
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Four modes are considered in this study: transit, driving, vehicle passenger and walk/bike. To 
explore the underlying rules of travelers’ switching decisions, DT models are built between the 
habitual mode and the newly identified alternative; as a result, a total of six DTs are established.  
 
After tuning the loss weight ratio and feature set size, six DT models are extracted between any 
two modes using training data from the C4.5 algorithm. The test data set is used to validate the DT 
models. The chosen loss weight ratio R and the feature set size, as well as the performance of the 
DT classifiers, are shown in the left part of Table 3.4. Logit models are built as a comparison; the 
model performance is shown in the right part of the table. Three measures of success are presented 
in the table, including prediction accuracy (PA), hit ratio (HT) and the aggregate match rate (AMR). 
Prediction accuracy and hit ratio, which reflect the modeling performance on an individual level, 
have been introduced and used in loss matrix selection and attribute selection. The aggregate match 
rate reflects the prediction accuracy on the mode aggregate level, defined as the ratio of the number 
of predicted observations (including correctly and incorrectly predicted observations) for one 
mode over the number of actual observations for the mode. The confusion matrices of the DT 
models are also included in the table. In the confusion matrix, each row shows the actual 
observations in the mode and each column shows the predicted number of observations in the 
mode. The diagonal elements give the number of correctly predicted observations of each mode 
and the non-diagonal elements give the number of misclassified observations of each mode. The 
team will first analyze the performance of the DT models and compare with logit models later. 
 
The DT models perform very well in prediction accuracy; most of the models have prediction 
accuracy over 90 percent, with 91.31 percent for the model between transit and driving, 91.79 
percent for transit and passenger, 93.92 percent for transit and walk/bike, 98.89 percent for driving 
and walk/bike and 97.63 percent for passenger and walk/bike. With an 84.01 percent prediction 
accuracy, the DT for driving and passenger performs the worst.  This is acceptable because drivers 
and passengers share a lot of attributes, and behavior patterns are relatively harder to classify. The 
high value of the hit ratio and the aggregate match rate clearly shows that the loss matrix can 
effectively address the class imbalance issues. Although there are many more observations in 
driving, the DTs successfully predict the minority classes by adopting a suitable loss weight ratio. 
For the model between transit and driving, the hit ratios are 67.79 percent and 93.98 percent, 
respectively. For driving and passenger, the hit ratios are 88.19 percent and 71.37 percent, 
respectively. For driving and walk/bike, the hit ratios are 99.57 percent and 87.34 percent, 
respectively. The DTs perform very well in the aggregate match rate, with most values between 
90 percent and 110 percent. 
 
Logit models are developed and compared with the DT models to evaluate the performance of the 
proposed DT induction method. Linear utility functions are assumed for logit models: 

 0, , ,
1

n
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U xβ β ε
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= + +∑  (13) 

 
Where Um is the utility of mode m. β0,m denotes mode-specific constant. βi,m is the coefficient of 
the ith explanatory variable in the utility function of mode m. xi,m is the ith explanatory variable of 
mode m. εm represents the random component of the utility, which is assumed as an independently 
distributed random variable with a Gumbel distribution. 
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The same training and testing data are applied to estimate and validate the logit models. In order 
to eliminate the effects of using the loss matrix, the training data are also oversampled using the 
same loss matrix to estimate logit models. All 10 explanatory variables are used in estimations, 
with some dummy variables created to represent the category variables in the data set. For travel 
time, estimated travel time for each mode is used instead of the unit travel time difference. The 
measures of goodness of fit, i.e., prediction accuracy, hit ratio and the aggregate match rate, are 
calculated and compared with DT models, as shown in Table 3.4. 

 
Table 3.4 Performance of DT Models and Logit models 

Model Loss Weight Ratio Feature Set Size Size of Tree PA PA (Logit) 
T and D 3 10 4087 91.31% 90.70% 
T and P 1 8 414 91.79% 87.31% 
T and W 1 10 264 93.92% 87.95% 
D and P 3 10 264 84.01% 90.52% 
D and W 2 3 490 98.89% 96.52% 
P and W 2 1 517 97.63% 88.64% 

T and D 
Confusion Matrix T D HT AMR HT (Logit) AMR (Logit) 

T 745 354 67.79% 120.66% 45.40% 81.80% 
Driving 581 9077 93.98% 97.65% 95.86% 102.07% 

T and P 
Confusion Matrix T P HT AMR HT (Logit) AMR (Logit) 

T 945 154 85.99% 104.00% 72.07% 93.63% 
P 198 2991 93.79% 98.62% 92.57% 102.20% 

T and W 
Confusion Matrix T W HT AMR HT (Logit) AMR (Logit) 

T 1068 31 97.18% 103.55% 89.72% 97.63% 
W 70 491 87.52% 93.05% 84.49% 104.63% 

D and P 
Confusion Matrix D P HT AMR HT (Logit) AMR (Logit) 

D 8517 1141 88.19% 97.64% 98.84% 110.29% 
P 913 2276 71.37% 107.15% 65.32% 68.83% 

D and W 
Confusion Matrix D W HT AMR HT (Logit) AMR (Logit) 

D 9616 42 99.57% 100.30% 99.87% 103.42% 
W 71 490 87.34% 94.83% 38.86% 41.18% 

P and W 
Confusion Matrix P W HT AMR HT (Logit) AMR (Logit) 

P 3153 36 98.87% 100.53% 93.10% 99.56% 
W 53 508 90.55% 96.97% 63.28% 102.50% 

* T, D, P, W is short for the four modes, transit, driving, passenger in a car and walk/bike respectively 
 
 
For the overall prediction accuracy, the DT models outperform the logit models in five out of six 
cases. Only for the switching between driving and passenger does the logit model perform slightly 
better. In terms of the hit ratio, while the two methods both predict the majority modes at high 
accuracy rates, DT models perform much better in predicting the switching to minority modes, 
especially the walk/bike mode and transit. A good example is the switching model for driving and 
walk/bike; the hit ratio accuracy for walk/bike is improved from 38.86 percent (the logit model) 
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to 87.34 percent (DT model). The switching choices from driving to car passenger and transit are 
also predicted more accurately by the proposed DT models.  
 
As for the aggregate match ratio, for driving and passenger, the aggregate match ratio for passenger 
is 68.83 percent and 107.15 percent for the logit and DT models, respectively. For driving and 
walk/bike, the aggregate match ratio for walk/bike is 41.18 percent and 94.83 percent for the logit 
and DT models, respectively. The DT models outperform the logit models in the two switching 
models, which also show a strong ability of handling the class imbalance issues with loss matrix. 
Otherwise, they perform similarly. 
 
In comparison, DT models outperform logit models in most cases at both an individual prediction 
level and an aggregate prediction level. The DT models can classify the minority classes very well, 
demonstrating that the they can better handle the class imbalance issues using the proposed 
decision tree induction method, compared to the logit models. Aside from a high accuracy and the 
ability to classify the minority classes using the loss matrix, there are many other benefits to 
employing DT models. They have high flexibility in the model specification. No IIA property 
needs to be assumed. Since DT comprises if-then rules, it can be easy interpreted and has high 
estimation efficiency (Xie et al. 2003). However, DT also has its shortcomings. In the Maryland 
team’s DT models, some continuous variables are parsed too fine. For the model between 
passenger and walk/bike, only one variable—the unit travel time difference—is used to construct 
the DT, which contains 259 leaves. Discretization can be implemented before DT induction to 
alleviate this problem. In addition, the DT models can’t capture the correlations among attributes 
or rule sets. 
 
To summarize, this section documents the entire agent-based travel behavior modeling approach. 
Multidimensional decision-making process is modeled in a way that search gain and search cost 
interplay and thereby determine which dimension travelers will search and make behavior changes. 
This gain-cost mechanism also helps to determine the stopping criteria for the search. Various 
production rules are employed to explain searching and decision-making along each behavioral 
dimension. The aforementioned modeling components are estimated based on empirical 
observations collected via surveys. Validation/calibration of these models are discussed in the next 
section. 
 

3.2  SILK AgBM: MODEL CALIBRATION AND 
VALIDATION 
 
3.2.1 Calibrating the Spatial Distribution of Travel 
A more flexible recalibration approach to gauge the spatial distribution of travel is proposed in this 
section. The proposed method relaxes the rigidity of using scale/constant parameters in 
conventional approaches. The proposed method directly recalibrates the systematic probabilities, 
which could potentially enhance the accuracy. The modeling flowchart is sketched in Figure 3.4.  
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Figure 3.4 Bayesian calibration for travel demand model transfers 
 

The estimated model system predicts systematic probabilities based on a local or future-year 
dataset where the system is applied. Different probability values are converted into confidence 
scores for different alternatives (indicating the strength of the decision that the empirical 
observation chooses, alternative m). Note that the score may not necessarily match the local data 
well. Typically, this score is represented by log-odds defined using the equation below. This 
measurement transfers the original scale of choice probability (i.e., [0,1]) to a space [-∞, +∞] where 
different continuous distributions are applicable. 

  (14) 

 
The log-odd statistics and predicted probabilities may not match the observed probabilities. To 
recalibrate the model, it is necessary to perform a mapping of the model predictions to actual 
observations. This mapping is represented by a series of posterior calibration functions based on 
Bayes’ Rule. Conditioned on each chosen alternative, a probability density estimator f is produced.  
 
  (15) 

 
Here, various distributions can be employed to approximate the distribution f. For enhanced 
performance, asymmetric posterior functions can be adopted to improve accuracy. For instance, 
an asymmetric Laplace distribution can be produced by mixing two exponentials: 
 

( ) ( )
( )( )log

1m
p ms E

p m
=

−

( ) ( )| ~p s m f s

Estimation 
Dataset F 

 

Agent-Based 
Behavior Model 

Choice: C(E) ∈ M 
Systematic Probability: 

P(m|E) 
Confidence log-odds s, 

that C(E) = m 
 

Local or 
Future 

Dataset: 
Obs.: E 

Bayes’ Rule 

p(m|s(E)) 

choice priors 
p(m) 

 

p(s|m) 
 

Denote: 
   Choice dimension: M 
   Chosen alternative: m 



 54 

  (16) 

 
These functions map score s to the actually observed probabilities. In other words, the family of 
posterior calibration functions adjusts the utilities estimated by the mode choice model in order to 
approximate the unobserved distribution of utility values for the local/future year dataset. Then, 
Bayes’ Rule and the choice priors are used to obtain the estimate: 
 

  (17) 

 
This spatial calibration method is then applied to recalibrate the AgBM behavioral modeling 
components: the routing and travel mode decision probabilities. The data sources used in the 
calibration and the calibration results are documented below. 
 
In order to calibrate the routing decisions, real-world field observations on an often-congested 
commuting corridor are collected as the testing dataset. For the calibration function of the class-
conditional densities, a Gaussian and a generalized extreme value (GEV) are fit to each of the 
class-conditional densities using the usual maximum likelihood estimates. The fits of these two 
functions represent a qualitative comparison between using symmetric distributions and using 
asymmetric distributions to approximate the class-conditional densities. Figure 3.5 shows the 
calibration function fits produced by these methods versus the testing behavior data. Performance 
measures are also offered for quantitative measurements. 
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Figure 3.5 Estimated class conditional score densities versus the actual densities of the 
testing dataset 

 
In general, the calibration results agree with the empirical observation. The average value for the 
naïve Bayes log-odds is approximately -0.5, which is consistent with the low diversion rates 
perceived from the testing dataset. In other words, the optimistic prediction estimated by the en-
route diversion model is well captured and recalibrated by this Bayesian calibration process. For 
the diversion class (+), the test data curve plotted in Figure 3.5 skews towards the left side, as the 
en-route diversion model gives these observations higher probability estimates to divert. The 
opposite occurs for the not-divert class (–).  
 
The calibration function maps the estimated probabilities (i.e., log-odd scores) to the actual-
observed diversion rates. Now the evaluation of the calibration results is of concern. There are at 
least two types of performance measures that have been typically used in data mining to assess the 
quality of probability estimates, specifically, log-loss (Good 1952) and squared error (Brier 
1950;DeGroot and Fienberg 1983). While a better score according to these rules actually means 
an overall improved prediction quality, it has occasionally been termed loosely as improving 
“calibration” (Bennett 2003). 
 
The actual classification for an empirical observation E (with class C(E) ∈ { +, – }) in the testing 
dataset is observed. Let δ denote the Kronecker delta function which equals 1 if the two arguments 
are equal to each other, and 0 otherwise. The log-loss and the squared error (Error2) are defined 
as Equation 18 and 19, respectively. 

 ( )( ) ( ) ( )( ) ( )log , log | , log |loss C E P E C E P Eδ δ= + + + − −  
 

(18) 
 

 ( )( ) ( )( ) ( )( ) ( )( )2 22 , 1 | , 1 |Error C E P E C E P Eδ δ= + − + + − − −  (19) 
 
This research first reports the average log-loss and the mean squared error (MSE) for the 
performance measure of the calibration. The results are given in Table 3.5. Both calibration 
functions result in significant improvement for the model’s prediction accuracy, as the average log 
loss statistic has been improved from −1.9909 to −0.9750 and −0.4792, respectively. The MSE 
has been reduced from 0.2855 to 0.0921 and 0.0767, respectively. Overall, asymmetric 
distributions (GEV in this case) tend to be empirically preferable and outperform symmetric 
distributions in terms of prediction accuracy.  
 

Table 3.5 Results for Calibrating the AgBM Routing 
 

Performance 
Measures 

Naïve Bayes Gaussian GEV 

Total Log-loss -2361.3 -1156.4 -568.34 
Avg. Log-loss -1.9909 -0.9750 -0.4792 
Total Squared Error 338.66 109.34 90.947 
Mean Squared Error 0.2855 0.0921 0.0767 
Predicting Accuracy 0.5877 0.9039 0.9182 
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In order to calibrate the mode decision probabilities, TPB/BMC Household Travel Survey data is 
employed as the representative sample for the MITAMS study area. Two different continuous 
statistical distributions are applied in this research as Bayesian calibration functions: a symmetric 
Gaussian distribution and an asymmetric generalized extreme value (GEV) distribution. The 
calibration is conducted on each alternative specific utility function to perform a mapping from 
model predicted probabilities to actual observation. Log-odds are used to transfer the original scale 
of choice probability (i.e., [0,1]) to a space of [-∞, +∞] in order to suite different continuous 
distributions. Figure 3.6 illustrates the estimated posterior distributions for the calibration of 
probabilities for choosing drive-alone mode.  
 
In the subfigures, the curves of the test data represent the actual densities of log-odds for choosing 
drive-alone mode. The curves are illustrated as nonparametric fixed-width kernels. In general, log-
odds distribute over the positive spectrum and skew toward the left side, indicating a higher 
propensity of choosing drive-alone mode. The fits of the two statistical functions represent a 
qualitative comparison between using different distributions to approximate the conditional 
densities. The asymmetric GEV distributions seem to outperform the symmetric Gaussian 
distribution. 
 

 
 

Figure 3.6 Estimated mode choice conditional log-odd densities versus the actual densities 
of the test data (TPB/BMC Household Travel Survey) 

 
 
As mentioned earlier, the recalibration approach maps the estimated log-odd scores to the actually 
observed choice probabilities. Now that the concern surrounds how to evaluate this proposed 



 57 

approach and compare it with existing approaches, such as transfer scaling. Measurements 
explained beforehand are employed here to assess the quality of the probability estimation. A better 
performance based on these measures can be termed improved “transferability” while it actually 
indicates overall higher prediction accuracy. Performance measures are reported in Table 3.6. 
 
 

Table 3.6 Performance Measures for Recalibrating the Mode Decision Rules 
 

 AgBM Transfer-
Scaling 

Gaussian GEV 

Avg. Log-loss -4.28 -2.85 -0.60 -0.48 
Total Log-loss -69399.20 -46220.76 -9751.87 -7831.75 
Mean Squared 
Error 

0.44 0.40 0.33 0.32 

Total Squared 
Error 

7161.50 6426.00 5321.36 5245.78 

Hit Ratio 0.53 0.57 0.65 0.65 
 
Based on the performance measures, both GEV and Gaussian calibration functions outperform the 
widely-used transfer-scaling method. The average log-loss and total log-likelihood statistics are 
reduced greatly in all four experiments. The mean squared error statistics are improved from near 
0.40 to 0.29-0.34. Overall, asymmetric distributions (e.g., GEV) tend to be empirically preferable 
in terms of hit ratio and squared errors. It is worth noting that more favorable statistical 
distributions (e.g., compound distributions that mix two different types of distributions) can be 
further tested in order to enhance the goodness-of-fit. 
 
3.2.2 Calibrating the Temporal Distribution of Travel 
Calibrating the temporal distribution of travel often involves a large number of parameters if 
discretizing the time frame into smaller time intervals. In this context, the Bayesian calibration 
approach is not the most suitable way for the calibration. In order to calibrate the temporal 
distribution of travel, a simulation-based optimization approach is proposed. The goal of the 
calibration is an optimization solving process to find the best decision variables so that the 
departure time profile of the behavioral user equilibrium (BUE) condition matches the real world 
temporal distribution data. Simulation-based optimization (SBO) is applied to achieve the 
calibration work. 
 
Decision variables that are optimized here are specified as a set of mental cognitive functions. 
These functions are subjective weights that are used to weigh the past experiences for each agent. 
Representativeness measures the typical characteristics of a historical experience. For instance, if 
travel time at 7 AM is usually 30 min, but is 60 min on a particular day because of an incident, the 
experience of 60 min can be regarded as non-representative for the usual situation and ignored in 
perception updating. Recentness measures when an event takes place. More recent events receive 
higher weights. These two measurements can also reflect the subjective reliability of the 
transportation network.  
 
 t t tw η ζ= ⋅  (20-a) 
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where tw  denotes the weight for day t among N days that has passed in the entire transportation 

experience. The weight is determined by a representativeness factor tη  and a recentness factor tζ

;  
*u  is the theoretical maximum payoff level under free-flow travel condition, and assumes all 

individuals initially believe there is no congestion; tu is the payoff on day t; 1θ and 2θ  are factors 

for representativeness and recentness. Thus, ,weight Nu  is the payoff of the day with highest weight 
(Eq. 20c). 
 
SBO is an optimization method that mainly handles optimization problems that do not have an 
analytical solution and request simulation to obtain the value of objective function. In these 
optimization problems, the relationship between decision variables and objective function are not 
derivable directly through mathematical formulations. Once a vector of decision variables 

1 2(x , x ,..., x )kX =  is given, simulation approach is usually required to observe the performance of 
X  on the objective variable . In SBO, a list of initial decision variables ( ) will be 
tested to approximate a list of objective variables ( ). These N initial sample points will 
be utilized through the SBO algorithm to regress the relation between  and  to a number of 
particular parameterized basis functions. Once this relation is built, a new vector of decision 
variables  that may have a large potential to reach better objective function values will be 
generated. With the existing N initial points and 1 infill point, the relationship will be regressed 
once again to generate infill vector  and, iteratively, more infill vectors. The termination 
criterion of this infill process is often set as a maximum infill number (M) of evaluations of 
objective function. 
 
In this research, SBO is selected because the optimal solution cannot be obtained in analytical 
ways; the real-world travel demand modeling has to rely on traffic assignment, simulation 
software, or other traffic models. Once the real-world traffic network and an initial demand have 
been obtained, the model will simulate every traveler’s travel experience and estimate their 
departure time switching process by the AgBM model system. The new departure times will be 
regarded as time-dependent demand. The process will be repeated until it reaches the BUE.  
 
Since the search cost, search gain and decision rules have been validated in previous sections, this 
SBO calibration main considerations are representativeness factor ( ) and recentness factor (
). There are 5 parameters to calibrate in this section: 
 

• Representativeness factor (Commute Trips), range from 0 to 1  

Y 1 2, ,..., NX X X

1 2, ,..., NY Y Y
X Y

1NX +

2NX +

1θ 2θ
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• Recentness factor (Commute Trips), range from 0 to 1 
• Representativeness factor (Other Trips), range from 0 to 1 
• Recentness factor (Other Trips), range from 0 to 1 
• Search Scale factor, range from 0.6 to 1 

 
The first four parameters are the factors in experience weight function in equation (20a) for both 
commuting trips and non-commuting trips; the last parameter is a scale factor for commuting trips, 
which means the commuting travelers will have smaller switches in search rules. The objective 
function is shown below: 

 

 

(21) 

 
 
where the simulation horizon is divided to  time periods;  is the demand percentage of period 
i over the whole horizon in real world data;  is the cumulative demand percentage from period 

1 to period i in real world data;   and  are the corresponding percentages of the 
condition from the AgBM model. 
 
The flow chart of SBO calibration is shown in Figure 3.7. First, N initial decision vectors will be 
generated by using the Latin hypercube sampling method (Chen et al., 2015) to fill the five-
dimensional range space of the decision variables. These initial vectors of behavior parameters 
will be loaded into the AgBM model to approximate the objective functions one-by-one. Next, the 
team applies the surrogate model modified by Chen et al. (2015) to regress the relation between 

 and . Based on the estimated parameter relationship, a new infill point with a large potential 
to reach better objective value will be generated for the AgBM to approximate its performance.  
After re-estimating the relation with the infill point, the system will generate one more infill point 
and repeat the infill process until the number of total infill points reaches M. After the termination 
of this SBO process, the system will pick the point with the lowest objective value to be the optimal 
solution. The capability of SBO to obtain the global optimal decision variables has been explained 
in this report. 
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Figure 3.7 Flow chart of SBO model calibration 
 
To enhance the applicability of this model, we applied the above calibration framework to a real-
world traffic system located in Montgomery County, Maryland. The calibration horizon was from 
5:00 AM to 10:00 AM, which contains 237,415 trips in the simulation model. The real-world 
demand profile is obtained from the 2007/2008 TPB/BMC survey. We generated 80 initial points 
and 40 infill points to complete the calibration. For each point, it takes around 20 simulation days 
to reach BUE. Before calibration, when the 5 parameters are all set to 1, the value of objective 
function is 7.559. After 120 iterations of SBO, the objective value drops down to 3.211, with the 
optimal decision vector [0.9925, 0.7724, 0.0247, 0.6123, 0.9953]. This calibration result indicates 
that commuting travelers weigh more on representativeness and non-commuting travelers weigh 
more on recentness. The search scale factor is close to 1, proving that the search rules are well 
validated in the previous approach. The comparison of the departure profiles is shown in Figure 
3.8 (a) and Figure 3.8 (b). 
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(a) Timely Demand Percentage Profile 

 
 

(b) Cumulative Demand Percentage Profile 
 

Figure 3.8 Temporal calibration results (a. timely demand percentage profile; b. 
cumulative demand percentage profile) 
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3.3  SENSITIVITY TESTING 
 
3.3.1 AgBM Simulation Setup 
The proposed multidimensional behavioral theory and models have been estimated and 
implemented in an agent-based simulation to demonstrate the capability. A demonstration network 
with one origin-destination pair, four alternative routes and three travel modes (auto, carpool, and 
transit) is employed. The network is illustrated in Figure 3.9. It consists of 6 nodes and 10 links 
(including 2 HOV links). 
 

 
 

Figure 3.9 A demonstration network for sensitivity testing 
 
 
The scenario that is analyzed in this simulation is a future-year scenario with increased travel 
demand that creates excessive travel time and cost for the simulated agents, and prompts them to 
start the multidimensional behavior adjustments. This microsimulation of extended morning peak 
hours (5:00 am – 10:00 am) generates 90,000 agents. The agents’ characteristics are synthesized 
based on Transportation Planning Board (TPB) – Baltimore Metropolitan Council (BMC) 
Household Travel Survey data collected in 2007 and 2008. 
 
3.3.2 Individual Behavioral Dynamics 
In the simulation, agents travel from the origin to the destination, accumulate experience, make 
behavioral adjustments on one or multiple dimensions, dynamically update beliefs, and eventually 
satisfy their decisions. The uniqueness of the model brings attention to each agent for whom the 
interplay of search gain and search cost is dynamically modeled in order to determine the 
behavioral dimension wherein the search and decision process occurs. Figure 3.10 illustrates the 
evolving gain/cost ratio for a particular agent. 
 
On simulation day one, the agent initially believes that all dimensions are rewarding (with all 
gain/cost ratios above one) while the most profitable dimension is the mode dimension. She/he 
then employs search rules and decision rules to identify and examine one alternative mode. While 
the subsequent search reveals further information, this agent’s knowledge and subjective beliefs 
on the mode dimension evolve significantly. On the second day, the departure time dimension 
emerges to be the one with the highest gain/cost ratio. Therefore, a search for alternative departure 
time is performed. Iterating this process, the agent forms a time-dependent search path for 
choosing behavioral adjustment dimensions: the mode-departure time-route-mode. On the fifth 
day, the gain/cost ratios of all dimensions drop down below 1, which indicates that this agent 
subjectively believes that no more searches are necessary. The agent is then satisfied and stops the 
search. Once a new turbulence emerges in the transport system, such as new policies or booming 
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travel demand, the agent may be influenced by the growth of gain/cost ratios in certain dimensions, 
inciting them to seek further changes.  
 

 
 

Figure 3.10 The evolving gain/cost ratios of multidimensional travel behavior 
 
3.3.3 System Convergence and Sensitivity Testing 
The convergence of the multidimensional behavior is illustrated in Figure 3.11. The scenario where 
all users stop making behavioral adjustments is defined as the Behavioral User Equilibrium (BUE). 
Overall, the model predicts active and reasonable agent behavior along the three behavioral 
dimensions. The convergence processes are smooth. With the innate bounded rationality and 
satisficing behavior, agents reach steady state and stop search within 25 search iterations. If each 
agent travels five days a week and all agents start searching at the same time, it would take five 
weeks for the traffic to stabilize and reach BUE on the network. This is an interesting finding in 
that, on the one hand, it allows us to model the gradual behavior adaptation to exogenous policies 
(e.g., pricing policy in Stockholm gradually nudges drivers to change behavior, Borjesson et al., 
2012). On the other hand, it suggests potential applicability of the proposed theory in large-scale 
planning models and simulation since it embeds multidimensional behavioral responses while 
maintaining a reasonable converging speed.  
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Figure 3.11 The convergence of multidimensional travel behavior 
 

 
In response to the assumed demand increase, changing route and changing departure time are the 
most significant ways of adapting behavior. The initially high route-searching frequency cools 
down rapidly when agents have difficulty identifying better alternative routes under the assumed 
overall demand increase. Agents quickly learn this and update their subjective beliefs, which 
results in a decreasing search gain in the route dimension. Instead, agents search alternative modes 
and departure times, leading to an increase in the number of agents searching for alternative 
departure times in the second and third simulation days. A few agents search for alternative modes. 
Agents’ mode searching and switching behavior is illustrated in Figure 3.12. Agents’ departure 
time changes are illustrated in Figure 3.13. 
 
By aggregating the individual behavior into travel patterns, we can observe that multidimensional 
learning and adaptation leads to a slight percentage decrease of auto drivers (Auto D in Figure 
3.12). Those agents switch to auto passengers (Auto P) or transit users. The aggregate mode share 
of auto drivers drops from 63.4 percent to 58.3 percent. After six simulation days, the mode share 
tends to stabilize even though, from the microscopic level, there still exists some 3,000 travelers 
changing their travel modes. The active departure time changes lead to a significant peak spreading 
effect. The assumed demand increase results in more severe congestion and unreliable travel time, 
especially during peak hours. The excessive travel time, cost, and schedule delays make the 
departure time adjustments necessary in order for agents to gain an acceptable payoff through 
search. The model predicts that the dominating behavioral responses to the stimulus are route 
changes and departure time changes, which are consistent with the existing research (e.g., Arentze 
et al., 2004). Meanwhile, the model predicts the behavioral dynamics and adaptive processes, 
which advance the current understanding of multidimensional travel behavior adjustments. 

0 5 10 15 20 25
0

1

2

3

4

x 10
4

Day (# of iterations)

N
um

be
r o

f A
ge

nt
s

 

 
# of travelers searching for departure time
# of travelers searching for mode
# of travelers searching for route



 65 

 

 
 

Figure 3.12 Agents’ mode share changes 
 

 
 

Figure 3.13 Agents’ departure time changes and peak spreading 
 

Travelers in the multidimensional agent-based model are not perfectly “rational,” in that they do 
not maximize their utility (or payoff). Instead, they are restrained by information acquisition cost, 
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decision cost, computational limitation, time budget and deadlines. Their irrationality also extends 
to their response to different intuitions and heuristic behavioral rules. Figure 3.14 demonstrates 
that through multidimensional learning and adaptation, agents search and improve their relative 
searching payoff. This term is defined as the ratio of the cumulative actual search gain and the 
cumulative subjective search gain (i.e., subjectively believed maximum payoff from the search) 
for all searchers. Judging by the curves, the departure time dimension is the most profitable 
dimension. Once agents begin searching in this dimension, they can retrieve the highest relative 
searching payoff. However, this learning and adaptation does not ensure that agents make 
decisions that result in maximum payoff. This example demonstrates the bounded rationality of 
the agents in search and changing their behavior. 
 

 
 

Figure 3.14 Agents’ payoff dynamics 
 

 

3.4  DTALite Traffic Simulation Engine 
 
3.4.1 DTALite Simulation Engine 
DTALite, an open-source light-weight, mesoscopic DTA simulation package, in conjunction with 
the Network eXplorer for Traffic Analysis (NeXTA) graphic user interface (GUI), has been 
developed to provide transportation planners, engineers and researchers with a theoretically 
rigorous and computationally efficient traffic network modeling tool.  This fully functional, open-
source dynamic traffic assignment model can be downloaded from 
https://code.google.com/p/nexta/.  The software suite of DTALite + NeXTA seeks to: 
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(1) Provide an open-source code base to enable transportation researchers and software 
developers to expand the range of capabilities to various traffic management 
applications; 

(2) Present results to other users by visualizing time-varying traffic flow dynamics and 
traveler route choice behavior in an integrated 2D/3D environment; and 

(3) Provide a free educational tool for students to understand the complex decision-
making process in transportation planning and optimization processes. 

 
Additionally, DTALite adopts a new software architecture and algorithm design to facilitate the 
most efficient use of emergent parallel (multi-core) processing techniques and exploit the 
unprecedented parallel computing power newly available on both laptops and desktops. The 
DTALite framework is illustrated in Figure 3.15. It integrates the four major modeling 
components, highlighted in yellow. 
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Figure 3.15 DTALite Software System Architecture with Key Modeling Components 
 
DTAlite requests at least two types of input data to conduct traffic assignment and/or traffic 
simulation: demand input data and network data. The demand input data includes a number of .csv 
files that describe the vehicle type (for emission and energy consumption estimation), demand 
type, OD tables and agent list. Both OD table and agent list are acceptable to provide the travel 
demand in the network. The OD tables store the time-dependent travel demand between different 
OD pairs. Most importantly for this integration effort, the agent list option provides the necessary 
linkage between SILK-AgBM and DTALite. The agent list predicted by SILK-AgBM can be used 
directly by DTALite. This agent list includes more detailed information, such as agents’ departure 
time, origin, destination, modes and route trajectories. The network data used by DTALite include 
several .csv files to code the transportation network, including information about node location, 
link location, and link attributes (e.g., capacity, number of lanes, link type, speed limit, toll, etc.).  
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DTALite’s four major modeling components include: 
 

(1) Time-dependent, shortest path finding, based on a node-link network structure. 
(2) Vehicle/agent attribute generation, which combines an origin-destination demand 

matrix with additional time-of-day departure time profile to generate trips. 
(3) Dynamic path assignment module, which considers major factors affecting agents’ 

route choice or departure time choice behavior, such as (1) different types of traveler 
information supply strategies (e.g., historical, pre-trip, and/or en route information, 
and variable message signs), and (2) road pricing strategies where economic values 
are converted to generalized travel time. 

(4) A class of queue-based traffic flow models that can accept essential road capacity 
reduction or enhancement measures, such as work zones, incidents and ramp meters.  
The queue-based traffic simulation model in DTALite only requires basic link 
capacity and free-flow speed for operation, which are readily available from static 
traffic assignment models.  By using simple input parameters, in addition to possible 
connections with common signal data interfaces, the proposed simulation package 
may enable state DOTs and regional MPOs to rapidly apply advanced DTA 
methodologies for large-scale regional networks, subareas, or corridors.  
Additionally, the modularized system design may help serve future needs by 
simplifying the process for transportation researchers and software developers to 
continue to build upon and expand its range of capabilities. 

 
With DTALite, one could integrate travel demand/behavior models in different ways. One typical 
way is to use travel demand models to prepare demand input data for DTALite and then rely on 
its time-dependent, shortest path finding and dynamic path assignment module to assign trips. In 
this AgBM-DTALite integration, traffic assignment modules in DTALite are replaced by agent-
based behavioral rules. In other word, SILK-AgBM will also do the routing for each agent. 
DTALite is employed as a traffic simulation engine (its meso-traffic simulation is mainly used in 
this integration). 
 

3.5  INTEGRATED SILK AgBM-DTALITE 
 
3.5.1 Overview of the Model Integration 
A transportation system typically has two major components: the transportation network and its 
users (potentially, decision-makers such as suppliers, logistics carriers, companies, and policy 
agencies can also be considered). The conditions of the transportation network are closely 
interrelated to the decisions made by its users, and vice versa. However, contemporary 
transportation models either fail to represent this or have to rely on unrealistic assumptions: 
 

• Traditional, four-step transportation planning models assume a sequential process: trip 
generation, trip distribution, modal split and traffic assignment. When trips are assigned 
to paths, other behavioral dimensions such as departure times and modes are assumed 
fixed. In other words, there is no direct linkage from supply-side traffic conditions to 
estimation and prediction on the travel demand side. 



 69 

• Activity-based models consider trips as induced demand from daily activity arrangement. 
There are certain “loops” built in activity-based models to reflect the linkage. However, 
activity-based models often assume perfect rationality in their discrete choice models for 
travel behavior. For instance, user equilibrium (or stochastic user equilibrium) is still 
assumed for route choices. This type of model focuses on modeling what travelers should 
do. It lacks behavioral realism and causes long computing time due to the calculation of 
equilibrium. 

 
As briefly presented in section 3.5, agent-based travel behavioral models have the capability of 
mimicking and simulating the travel behavior changes of each user in the system. SILK-AgBM is 
an agent-based travel behavioral model system that emphasizes the role of searching, information, 
learning and knowledge (SILK). This modeling tool has been developed by UMD and already 
applied by MDSHA. It can also be efficiently interfaced with a dynamic traffic assignment model, 
such as DTALite. Once integrated with a traffic simulator, the system can be complete, given that 
all traffic conditions in the transportation network can be imitated by the simulator. This motivates 
the proposed integration of agent-based models and DTA simulator, as illustrated by the following 
flowchart (see Fig. 3). The traffic simulator used is the DTALite model (i.e., an open-source Light-
weight Dynamic Traffic Assignment and Simulation Engine, https://code.google.com/p/nexta/). 
Therefore, the integrated model is named AgBM-DTALite for short. 
 
 

 
Figure 3.16 The systematic framework for the integrated AgBM-DTALite model 

 
Travelers arrange their daily or recreational itineraries based on knowledge and various 
information sources: previous experience, social network, mass media, real-time traffic data 
sources (e.g., Google and INRIX), etc. Exogenous changes may result in different adjustments to 
the travel itinerary. AgBM models the travel behavior with the full consideration of information, 
learning, knowledge and searching. Here, the emphasis is given to the integration and, in particular, 
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the information exchange between AgBM and DTALite. DTA models are capable of simulating 
traffic in greater detail and producing various time-varying traffic information. A successful 
integration can provide a useful analysis tool to predict travel behavior in higher fidelity and 
accuracy and to evaluate various exogenous changes. The changes include relatively shorter-term, 
real-time information provision through advanced traffic information system (ATIS), as well as 
more long-term vehicular technology advances (e.g., ride-sharing, connected/autonomous 
vehicles). In the proposed AgBM-DTALite, two levels of integration are developed: 
 

(1) Between-day integration: On one particular simulation day, agents are able to acquire 
information from previous days and accumulate knowledge about the transportation 
system. For instance, when an autonomous vehicle is introduced to a household in a future 
year, members of the household will respond and rearrange their trips. Seniors and 
juveniles who previously rely on non-auto modes now may consider riding in the vehicle. 
Working adults may need to readjust departure time to accommodate the foreseeable 
increase in vehicle usage. These changes to each agent are modeled and outcomes are fed 
into DTALite to simulate dynamic traffic conditions, based on which agents will adapt 
their behaviors again. 

(2) Within-day integration: Within the same day, information is conveyed between AgBM 
and DTALite. Real-time information on congestion and different non-recurrent incidents 
has been made available to a certain percentage of agents, which reflects the fact that ATIS 
subscribers and Google/INRIX users have access to timely estimates of traffic congestion. 
This type of information exchange would trigger dynamic behavior adaptation. En-route 
diversion is a likely reaction and is incorporated in this integration. Future studies may 
also internalize dynamic modal shifts (park-and-ride options along major freeways, ride-
sharing, etc.).  

 
3.5.2 Day-To-Day Integration 
A unique aspect of SILK-AgBM and DTALite is that their data conversion and communication is 
fairly user friendly and thus the integration can potentially be developed flexibly in any 
programming environment. This aspect is a benefit to the integration. Nevertheless, certain data 
communication between AgBM and DTALite is necessary under the consistent data hub platform 
in order for comprehensive and streamlined analysis of the complex transportation system.  
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Figure 3.17 Data flow chart of AgBM-DTALite day-to-day integration 

 
Travelers are synthesized in SILK-AgBM. Their travel behaviors (i.e., mode, departure time and 
route choices) are modeled and simulated based on concepts of search, information, learning and 
knowledge. These travelers’ decisions are implemented in the transportation network and 
simulated using DTALite traffic simulation engine. Traffic conditions are predicted using 
DTALite and then again assessed by SILK-AgBM agents.  
 

Table 3.7 Comparison between SILK-AgBM and DTALite 
 

Integration Components SILK-AgBM DTALite 
Developed Functionalities CSV file reading and 

writing; integration 
convergence definition 

CSV file reading and 
writing 

Input Data from Data 
Hub 

Day-to-day, time-dependent 
traffic skims for different 
modes 

Traffic network; 
multimodal time-dependent 
agent list; agent path 
information 

Output Data to Data Hub Agent lists with OD 
information, mode choice, 
departure time choice and 
route choice 

Speed/density/volume data 
for each link at different 
time-of-day 

 
The method in which the DTALite model produces output has been adapted in order to meet the 
integration needs. A number of output files are generated. Therefore, for agent-based modeling, 
each agent is able to extract detailed day-to-day traffic information for her/his decision-making 
processes. The output files are in standard .csv format.  
 

• Output_Agent.csv: This file, which has been output from the agents’ perspective, record 
all agents travel information, including their path sequence with exact simulation clock, 
their demand types, vehicle types, etc.  
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• Output_Skim.csv: This skim file is the main feedback mechanism from DTA to SILK-
AgBM, in which travel times, distance, toll cost and path node sequence between each OD 
pair are informed by the DTALite traffic simulator. These traffic skims are summarized for 
different time-of-day (i.e., traffic skims may differ in different time-of-day for the same 
OD pair) and different demand types (e.g., SOV, HOV, truck, light rail, etc.). 

• Output_Routing_Policy_minXX.csv: This routing policy output file can be generated 
depending on time periods. The major function is tracking agents on the network. To 
achieve that function, three references (distance, travel time, node sum) have been 
produced to distinguish and filter different agents. SILK-AgBM would receive all the 
output files from the data hub, analyze agents travel patterns and then modify input files 
for certain attributes for another day-by-day simulation. 

 
These output files will inform SILK-AgBM. Agents will search for information, learn and update 
their knowledge  based on information collected from the simulation models. This agent-based 
knowledge and learning is maintained in the SILK-AgBM modeling platform. Based on the traffic 
output files and agent-based knowledge updating, the SILK-AgBM model will also predict 
multidimensional agent behavior responses in mode, departure time and route choices. The 
outcomes of SILK-AgBM have also been adapted and reorganized following DTALite-compatible 
format (e.g., Input_Agent.csv). This list of agents will be used as input for the next round of 
DTALite traffic simulation. 
 

 
 
Figure 3.18 Screenshot of an example Input_Agent.csv produced by SILK-AgBM and fed 

into DTALite (SILK-AgBM provides input information regarding agent ID, OD, departure 
time, demand type, vehicle type, information provision type, value of time, toll cost, path 

distance and path node sequence) 
 
A key component of the day-to-day integration is the redefinition of convergence in the integrated 
AgBM-DTALite model. As mentioned earlier, user equilibrium is no longer defined. Considering 
travelers’ actual behavior and adaptation to traffic conditions, behavioral user equilibrium (BUE) 
is defined in this integration. BUE is a convergence state where no agents are seeking behavioral 
adjustments in any behavioral dimensions. Therefore, the convergence testing mechanism is 
reconstructed using this BUE concept. 
 
A pseudo code for the day-to-day integration is provided below: 
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`  
 

Figure 3.19 Pseudo code for the day-to-day integration of AgBM-DTALite 
 
3.5.3 Within-Day Real-time Integration 
Day-to-day integration allows us to analyze various planning and policy applications. Nevertheless, 
short-term policy making such as active traffic management would require tighter integration 
between SILK-AgBM and DTALite at a fine-grained level, such as minute-by-minute. Based on 
different application needs, this level of detail can be customized. Therefore, we hereby refer to 
this tighter integration as “within-day” real-time integration.  
 
In this integration, the focus is given to dynamic behavior adjustment, such as en-route diversion. 
In response to real-time changes in traffic conditions, traffic management strategies and/or non-
recurrent incidents, certain travelers are more willing to make dynamic route changes in order to 
optimize their traveling. There is also passive diversion stimulated by dynamic message signs, 
advanced traffic information, etc. Drivers may convey to the detour instructions. At the same time, 
travelers could also make other behavior changes, such as pre-trip departure time adjustment, pre-
trip or en-route modal switching, etc. These behavior considerations should also be incorporated 
in AgBM-DTALite.  
 
In order to achieve this level of integration, a number of DTALite output files are generated: Real 
time link performance measures are reported in RT_Output_LinkMOE.csv. Attributes in this file 
sufficiently provide AgBM with link traffic situation in predefined time intervals, including speed, 
density and link travel time. 
 



 74 

• Real time information on certain predefined agent-groups is reported in 
RT_Output_Tagged_Agent.csv. Using agent tagging, DTALite can track particular agents, 
including those who use certain link(s) or who are traveling between a critical OD pair. 
This enables AgBM-DTALite to track agents who are actively changing behavior in real-
time. 

• Real time information on agents who complete their trips is reported in 
RT_Output_Complete_Agent.csv. 

 
These output files will be processed in real-time by SILK-AgBM, demonstrating that on-time 
traffic information is considered by travelers. Similar to the day-to-day integration, the following 
list of output files will be used as input by DTALite. 
 

• A real-time, updated list of agents is provided by RT_Input_Update_Agent.csv. This real-
time input file created through AgBM would be deployed as a DTALite input file. Updated 
agents have new values of attributes, including departure time, path sequence, information 
type, etc. All of these new attributes of certain agents could create new link features, 
depending on how the agents behave or how AgBM works. 

• Real time updated link attributes are provided by RT_Input_LinkAttribute.csv. 
Adjustments in agent behavior could also affect link attributes. Therefore, the integration 
uses this file to inform AgBM-DTALite about the link-level changes. 

 
The time interval of one round of data exchange performed by SILK-AgBM and DTALite  can be 
predefined in input_simulation_scheduling.csv. For instance, 300 sec for RT_Output_LinkMOE 
indicates that real-time link performance measures will be produced every 300 seconds. Note that 
different input/output can have different time intervals. For instance, an integrated model can 
produce RT_Output_LinkMOE in 300 seconds and read RT_Input_Updated_Agent as input every 
600 seconds. This way, the simulation clock can be synchronized. 
 
A pseudo code for the within-day, real-time integration is provided below: 
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Figure 3.20 Pseudo code for the within-day integration of AgBM-DTALite 
 
3.5.4 The Convergence Property of the Integrated AgBM-DTALite 
Convergence of this agent-based model can be directly measured by the remaining number of 
travelers still searching for alternative routes. Performance of the network can be measured both 
after the equilibrium is reached and during the equilibrium process. This is an advantage of the 
agent-based model over network equilibrium models. This capability would be valuable in 
situations when the duration of the equilibrium process is quite significant in comparison with the 
planning horizon, or when it is clear that an equilibrium does not exist in the modeled system. 
Understanding how the AgBM-DTALite tracks the system evolution over time should be intuitive; 
therefore, the following memo focuses on the behavioral user equilibrium (BUE) and convergence 
property of the model. 
 
In this subsection, a memo that demonstrates the finiteness of behavioral adjustment is provided. 
This is the theoretical foundation of the existence of behavioral user equilibrium and the definition 
of the convergence criteria of the AgBM-DTALite. The condition for the BUE is that for all users, 
perceived search costs exceed expected search gains. In order to demonstrate that this equilibrium 
indeed exists, it is necessary to revisit the definition of expected search gain gdi for traveler i in 
dimension d. The traveler’s perceived search cost (scdi) in the same dimension d is always a 
positive constant. Therefore, there must exist a positive integer Ndi for a specific dimension d, such 
that after Ndi searches, scdi > gdi, because: 
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For the same reason, there must exist a positive integer Ni, such that after Ni searches, scdi > gdi 
for all dimensions d. Let N* be the maxim of all Ni. The BUE will surely be reached after N* 
search iterations, which demonstrate its existence. The BUE exists because users adjust their 
expected search gains to accommodate unsatisfactory performance of the transportation system. 
Eventually, one individual stops searching, either because a good alternative is identified, or 
because repeated experience with unsatisfactory alternatives leads to decreased expectations. 
 
While the existence of BUE is guaranteed in AgBM-DTALite, it is not practical to perform the 
integration until every single agent stops behavioral adjustments, especially under the 
circumstances of slow convergence or large-scale simulation. To facilitate the integrated modeling 
and analysis, we also define the gap of behavioral user equilibrium as the percentage of travelers 
who are still searching for behavior changes. 
 

 ( )gap % 100

d
search

d

total

n

n
= ×
∑

 (2) 

 
Where d

searchn  denotes the number of agents who are searching in dimension d. totaln  denotes the 
total number of simulation agents. Based on this measure, researchers are also able to quantify the 
speed of convergence and how fast a transportation system will re-equilibrate after disturbance. 
Applications of the AgBM-DTALite modeling system can choose the convergence criteria 
differently according to various analysis needs. 
 
When the multidimensional search and switching rule sets are implemented as deterministic rules 
(e.g., the same antecedent condition of an if-then rule always yields the same behavior, etc.), the 
BUE behavioral pattern is always unique, given an initial system state, because travelers’ 
multidimensional behavior adjustments are completely determined by their searching, learning, 
decision rules and the initial state. In this sense, the BUE with the deterministic implementation is 
also unique. However, if probabilistic rules are deployed in conjunction with a randomization 
procedure (e.g., a pseudo random number generator), the AgBM-DTALite system will exhibit 
Markovian variability and different BUE patterns will be obtained. Nevertheless, a specific 
random seed and initial condition will still lead to the same equilibrium state.  
 
An equilibrium is considered stable if the system can return to the same equilibrium state after a 
perturbation. A small change in the network may cause individuals in the AgBM-DTALite system 
to start searching for new alternatives because their perception about search gains increases just 
slightly to exceed the perceived search cost in one or several behavioral dimensions. For the same 
reason, some travelers may change routes, departure times or modes when a small perturbation is 
introduced to the system. Even if just a few travelers actually change behavior, they may not switch 
back to their previously chosen routes, departure times or modes after the perturbation disappears, 
because the search and behavioral adjustments will enable them to learn new information and 
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update their spatial knowledge. Therefore, the BUE is not stable, which is expected for a system 
with historical dependency. The question of whether or not a small noise causes consequential 
impacts in the multidimensional travel behavior cannot be answered analytically. Simulation 
experiments are necessary.  
 
The nature of the AgBM-DTALite dictates that the final BUE depends on the initial state specified. 
In this section, it is assumed that the network is initially empty and users are loaded onto the 
network stochastically based on their departure time frame (specified in the DTALite engine). In 
the real world, the network is constantly changing and population fluctuates. In order to apply the 
AgBM-DTALite and BUE for transportation planning or policy analysis, it is necessary to properly 
identify the initial conditions. A common method to deal with this issue is to first run the AgBM-
DTALite with an arbitrary initial state and save a later system state as the new initial state for 
analysis. Another way of defining the initial state is to train the agents with knowledge/information 
that is based on available ground truth data sources (e.g., 24-hour traffic counting, link travel times 
based on probe vehicles, etc.). 
 

3.6  CALIBRATION AND VALIDATION OF SILK 
 
The core of the system is the AgBM-DTALite integrated model, which simulates agent behavior 
and traffic trajectories. AgBM-DTALite adopts an integrated offline calibration model to adjust 
all of its internal model parameters based on historical observations. After the BUE is reached, the 
outputs of the agent-based simulation are used for model validation against real-time data feeds, 
including fixed traffic flow detectors and probe vehicle sensors. Travel behavioral patterns and 
dynamic traffic conditions are validated. Finally, model sensitivity is analyzed through scenario 
analysis. 
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Figure 3.21 A systematic framework of the calibration, validation and sensitivity analysis of 

the integrated AgBM-DTALite model 
 
A two-stage offline calibration approach is adopted in the integrated AgBM-DTALite. In the first 
stage, OD matrices are calibrated using an iterative path-based OD adjustment algorithm. In the 
second stage, the multidimensional agent-based behavioral model parameters are adjusted using a 
Bayesian calibration method, taking full advantage of the historical database.  
 
At this stage, online parameter calibration is not implemented. Real-time and online parameter 
calibration will certainly add value to the time-dependent performance of AgBM-DTALite. On the 
other hand, notable influence on the computational efficiency due to real-time adjustments will 
undermine the overall applicability of the integrated AgBM-DTALite in multi-corridor and 
regional case studies. In the current phase of research, the team focuses on the implementation of 
integration. Developing an online calibration module that uses the developed data store—
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especially the real-time data feed—can  be a useful extension in the next phase of this research. In 
this research, dynamic transportation control/management (toll rates, ramp metering rates etc.) and 
real-time data feeds (including real-time traffic surveillance, individual trajectories and context 
data) are used as inputs for the integrated model and for the model validation. A comprehensive 
validation of dynamic traffic conditions and multidimensional travel behavioral patterns will 
ensure the model performance is satisfactory. 
 
Finally, the sensitivity analysis is included in the system to test how sensitive the model is to 
changes in the inputs and weights adopted in the integrated model. The amount of sensitivity 
analysis that can be performed is often application-specific and limited by budget and time 
constraints. In practice, it is recommended that decision-makers elicit preferences on what shall be 
considered the most important factors to examine in the sensitivity analysis. We demonstrate in 
this memo a number of sensitivity tests based on presumed scenarios. When implementing the 
model for real-world applications, a variety of sensitivity tests will be included, according to the 
needs of different application contexts.  
 
3.6.1 Offline Calibration of AgBM-DTALite 
Before calibration begins, the complete 24-hour signal timing information for all signalized 
intersections in the study area must be accurate. Signal timing plans for these intersections are 
obtained from the state and county departments of transportation and then implemented in the 
simulation model. Signal timing plans are in standard Synchro data format, including information 
on phase timing (minimum initial/split, total split, yellow time, all-red time, etc.), phase sequence, 
detector locations, and so forth, for different time-of-day. 24-hour field count data are used for 
model calibration. The data comes from freeway and local arterial sensors, and are collected for 
multiple days. Using the hourly OD, the calibration algorithm (details are listed in Zhang et al. 
2013) evaluates demand adjustment factor αij,r, t associated with each path r between an OD pair i, 
j and, for a given time period, t, by using the following equation: 

 

 

(3) 

 
Where ij denotes OD pair from origin i to destination j; r ∈ R(ij, t) where R denotes the complete 
set of all used paths of OD pair ij at time t; S(ij, r, t) denotes the link set of path r at time t. Fa,t 
denotes the actual link flow on link a at time t; fa,t denotes simulated link flow on link a at time t; 
∆tij,r,a,t denotes travel time from origin i to link a starting at time t. ζij,r,a,t is an indicator which 
equals 1, if a ∈ S(ij, t) and 0 otherwise. 
 
Various performance measures have been applied to evaluate the accuracy of the match between 
field data and simulated counts: 
 
1. Root Mean Square Deviation (RMSE) 
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2. Normalized Root Mean Squared Error (MSE) 
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(5) 

 
3. Pearson Correlation Coefficient (PCC) 

 

 

(6) 

 
Where N is the number of independent set data to be compared,  and denotes the 
observed and simulated count at sensor i. RMSE represents the sample standard deviation of the 
difference between simulated and observed counts; MSE indicates the relative deviation, where 
observed counts are weighted by volume; PCC is a measurement indicating the correlation 
between field counts and simulated counts. If r2 = 1, the model is exactly predicting the test data, 
while r2 = 0 indicates there is no correlation between the model results and the field measurements.  
 
After the OD calibration, the second stage of the offline calibration is to recalibrate model 
parameters of the agent-based travel behaviour model (AgBM). The research team develops a 
more flexible recalibration approach which relaxes the rigidity of using traditional recalibration 
parameters. The proposed method directly recalibrates the systematic utilities, which could also 
potentially enhance the accuracy.   
 

 
 

Figure 3.22 Bayesian calibration for SILK-AgBM models 
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The estimated choice model predicts systematic utility functions based on the local or future-year 
dataset where the model is transferred. Different utility values are converted into confidence scores 
for different travel modes (indicating the strength of the decision that the empirical observation 
chooses mode m). Note that the score may not necessarily match the local data well. Typically, 
this score is represented by log-odds defined using the following equation. This measurement 
transfers the original scale of choice probability (i.e., [0,1]) to a space [-∞, +∞] where different, 
continuous distributions are applicable. 
 

  (7) 

 
The log-odd statistics and predicted probabilities may not match the observed probabilities. To 
transfer the choice model, it is necessary to perform a mapping of the model predictions to actual 
observations. This mapping is represented by a series of posterior calibration functions based on 
Bayes’ Rule. Conditioned on each mode alternative, a probability density estimator f is produced.  
 
  (8) 

 
Here, various distributions can be employed to approximate the distribution f. For enhancing the 
performance, asymmetric posterior functions can be adopted here to improve accuracy. For 
instance, an asymmetric Laplace distribution can be produced by mixing two exponentials: 

 

  (9) 

 
These functions map score s to the actual choice probabilities. In other words, the family of 
posterior calibration functions adjusts the utilities estimated by the mode choice model in order to 
approximate the unobserved distribution of utility values for the local/future year dataset. Then, 
Bayes’ Rule and the choice priors are used to obtain the estimate: 
 

 
 

(10) 

 
Various measures of effectiveness (MOEs) are established in this study to evaluate the 
transferability as well as the recalibration results. Two typical measures for goodness-of-fit are 
employed to assess the transferability effectiveness: log-loss (Good, 1952) and mean squared error 
(Brier, 1950). Two other frequently used MOEs in the travel forecasting literature are also included 
in this study: transferability test statistics (Atherton and Ben-Akiva, 1976) and transferability index 
(Koppelman and Wilmott, 1982). 
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• Log-loss is employed when the model output is a numeric probability, which mainly 
performs as a gauge of prediction confidence. Log-loss measures the accuracy of a 
prediction and it can be considered as the cross entropy between the distribution of the true 
class and the prediction. Log-loss is calculated by Eq. (11): 
 
 ( )( ) ( ){ }log , log |

C m
loss C E C P C Eδ

=
=∑  (11) 

 
where δ denotes the Kronecker delta function, which is equal to 1 if the two arguments are 
identical and 0 otherwise, and C(E) denotes the actual class of an empirical observation E. 
When the class of an observation is correctly predicted with a probability of 1, log-loss is 
0. By minimizing the log-loss, one maximizes the accuracy of the model.  

• Mean squared error (MSE) describes the difference between the prediction and the 
observation. When the class of an observation is correctly predicted with a probability of 
1, MSE is 0. MSE is computed using Eq. (12): 
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• Transferability test statistics (TTS) measures the difference between the uncalibrated 

model and the model recalibrated. The null hypothesis is that the parameters of the 
transferred model do not vary substantially from the parameters estimated from the 
application context data. TTS is calculated as twice the difference in log-likelihood, as 
defined by Eq. (13): 

 
 ( ) ( )( )* *2 j i j jTTS l lθ θ= − −  (13) 

 
where 𝑙𝑙𝑗𝑗∗(𝜃𝜃𝑖𝑖) is the log-likelihood of the transferred model and 𝑙𝑙𝑗𝑗∗�𝜃𝜃𝑗𝑗� is the log-likelihood 
of the application context model. The null hypothesis is rejected when the TTS is greater 
than critical chi-square with degrees of freedom equal to the number of model parameters. 

• Transfer index (TI) describes how the log-likelihood of the model exceeds a null model. 
TI is calculated as:  
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where ( )*

jl C  is the log-likelihood of the market share model. In general, TI is a relative 
measure and TTS is a statistical test measure (Ortúzar and Willumsen, 2011). 

 
In one of the proposed real-world applications, the simulation network covers the critical I-270 
corridor and extends to I-95 and I-495 in Maryland. The network contains 474 internal zones, 102 
external zones, 6,450 links and 2,373 nodes. The base year model (2010) is well calibrated with 
hourly volume data provided by 179 sensors from the SHA’s traffic monitoring system, which 
provides two continuous day’s hourly volume data (green points in Figure 3.23).  
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Figure 3.23 Mesoscopic transportation network employed in the MITAMS C10 
 
The result of calibration is shown in Figure 3.24. It demonstrates that the mean squared error 
decreases from 34.8 percent to 15.3 percent in the calibration process. This calibrated outcome can 
be used for a wide range of applications, either through applying the mesoscopic model directly 
for regional analysis or for smaller case studies through sub-area analysis. 
 

 
 

Figure 3.24 Calibration results of the integrated AgBM-DTALite model 
 
3.6.2 Validation of AgBM-DTALite Simulation Outputs  
The comprehensive validation involves the validation of dynamic traffic conditions as well as the 
validation of travel behavioral patterns. The validation of traffic conditions seeks to provide a 
macroscopic understanding of urban traffic dynamics. Using both fixed sensing data of freeways 
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and probe vehicle data of major arterials, the research team validates the simulation outputs on the 
network level, investigates the relationship of the accumulation of vehicles in a network with the 
exit outflows, and examines the equivalent relationship of the freeway network-wide weighted 
average density and flow rate. We have  
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where tN  is the time varying number of vehicles in a network denoted by A , each individual link 
is a A∈ , ,a tk  is the traffic density of link a  at time t ,  and al  and aλ  are the length and the number 
of lanes of link a .  
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where tK  is the space mean density (vehicle per mile per lane) at time t , and L  is the total length 
(lane-miles) of the network. 

Analogously, we have  
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where tQ  is the space mean flow rate (vehicle per hour per lane) of the network, and ,a tq  is the 
traffic flow rate of link a  at time t . Both empirical observations (Geroliminis & Daganzo, 2008) 
and dynamic traffic assignment experiments on a real, large-scale urban network (Mahmassani & 
Saberi, 2013) concluded that tQ  is robust linear with the trip completion rate that is the sum of 
finished and exiting trips for the whole network.  

The network-wide weighted average speed is given by 
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where the weighted quantity is the number of vehicles on an arbitrary link a  at time t . According 
to the traffic variables relationship in the MFD, as well as equations (2-4), the network average 
speed is estimated by  
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The spatial standard deviation of densities in the network is formulated by  
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Without loss of generality, the coefficient of variation (CV) of network-wide densities is  
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where the network CV tδ  at time t  is a normalized measure of spatial dispersion of vehicles in the 
network. The absolute value of the CV is expressed as a dimensionless percentage of the standard 
deviation to the mean value.  CV can be used to identify the time-dependent reliability on a 
transportation network level. 
 

 
(a) 

 
(b) 
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(c) 

 
Figure 3.25 Comparisons of the simulated and measured MFD curves 

 
We run the AgBM-DTALite model for two replications. It validates simulation results by 
comparing the network average speed, density and flow with six-month traffic flow data at fixed 
sensors. The square blue curves represent historical average network-wide statistics across 130 
weekdays (information provided by INRIX). Based on the freeway link output files (minute-by-
minute link speed, density and flow) of the simulation, we can see the simulation matches well 
with historical measurements, considering that the simulation model was calibrated by an 
independent dataset (i.e., annual average daily traffic counts and turning movement).  
 
In INRIX datasets, five-minute speed data of weekdays over the course of 2012 are available for 
every road segment of most arterials in the study area, but road densities and vehicle counts are 
not known, because probe vehicles consist of only a small amount of the road users. 
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Figure 3.26 Comparison of the simulated and measured major arterial average speed 
 

3.7  AgBM-DTALITE DEMONSTRATION 
 
The developed integrated AgBM-DTALite model is tested in a real-world case study using a mid-
size transportation network. The study area is the White Flint region of Montgomery County, 
Maryland. White Flint lies between Rockville and Bethesda, two highly urbanized areas located 
in the Northwest quadrant of the Washington D.C. Metropolitan Area. I-270 and MD-355 serve 
the majority of northbound and southbound traffic in the area. There are a few east-west corridors, 
including Randolph Road. Multiple bus lines and  Washington Metrorail’s Red Line also serve 
this vivid area. Mixed land development and transit-oriented development are currently ongoing 
in White Flint. Business, residential and shopping units are being built in close proximity to the 
Metro Station. While reshaping a dense and multi-functional urban region, the traffic impacts 
caused by these development projects draw attention and need to be analyzed.  
 
24 traffic analysis zones, 55 roadway links, and 136 nodes are included in this network. A total 
number of 40,140 traveling agents are generated to represent the travel demand pattern in the 
morning peak hours of a typical workday.  
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Figure 3.27 Study area for demonstrating the integration of SILK-AgBM and DTALite 
 
 

 
 

Figure 3.28 The convergence of the AgBM-DTALite on the demonstration network 
 
 A dynamic user equilibrium cannot be achieved within 50 iterations when running a typical DTA 
with this size network and demand files. In fact, the larger the network, the greater number of 
iterations are required to reach DTA convergence. Based on the proposed SILK multidimensional 
travel behavioral model, another equilibrium, behavioral user equilibrium (BUE), has been defined 
in this research as the situation where all agents stop making behavioral adjustments. Initially, 
travelers will follow the travel option that yields the lowest generalized cost. Congestion during 
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the a.m. peak hours results in the discrepancy between the expected and realized travel conditions. 
As a result, over 70 percent of travelers decide to search, learn and adapt to the network by 
adjusting modes, departure times and/or routes. Among these travelers, more than half are 
searching routes. As time goes by, agents reach satisfaction either because a more promising travel 
alternative has been identified or because of the decreasing expectation on travel condition after 
excessive searching. Therefore, the number of searchers decreases. After ten iterations, only a very 
small number of users are still actively searching for alternatives. If we define the convergence 
criteria of BUE as 1 percent of the travel behavioral gap, the integrated model reaches convergence 
after thirty simulation iterations. Defined by the SILK theory and bounded rationality, BUE 
convergence is guaranteed regardless of the size of the network and the scale of the study.  
 

 
 

Figure 3.29 The convergence of the day-to-day integration of AgBM-DTALite 
 

In response to the actual experienced congestion level in the suburban Washington D.C. 
metropolitan area, changing route and changing departure time are the most significant ways of 
behavioral adaptation. The initially high route searching frequency tapers off rapidly, since agents 
have trouble identifying better alternative routes under the overall peak-hour congestion condition. 
Agents quickly learn the fact and update the subjective beliefs, which results in a decreasing search 
gain in the route dimension. Instead, more agents turn to search alternative modes and departure 
times. Thus we can observe in the simulation an increasing number of agents searching for 
alternative departure times in the second and third simulation days. A few agents search for 
alternative modes.  

 
Travelers in the AgBM-DTALite model are not perfectly “rational,” in that they do not minimize 
travel time. They are restrained by information acquisition cost, decision cost, computational 
limitation, time budget and deadlines. They also follow intuitive and heuristic behavioral rules, 
which together represents a descriptive approach. If planners and engineers take a normative view 
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on system performance, the non-rational behavior may have a cost because it is not at optimum 
defined by normative standards. If minimizing system-wide travel cost is the normative goal from 
a system manager’s perspective, the cost of not being “rational” is the excess travel time, defined 
as the difference between the actual travel time and the minimum possible travel time on the 
network. The relative excess travel time is the excess time normalized by the minimum possible 
time (i.e., actual minimum divided by minimum). 
 
When many travelers search and change behavior in an ever-changing environment, the traffic 
pattern shifts continuously and it is difficult for individuals to find the best alternatives. The 
average relative excess travel time of all modeled travelers is very high during the first several 
iterations. As more and more travelers stop searching and switching, a steady decrease in the 
relative excess time is observed. At the BUE, the average relative excess travel time is 3.1 percent, 
which implies that an average traveler could reduce travel time by 3.1 percent in the demonstration 
network, provided that other travelers do not subsequently change behavior. 

 
 

Figure 3.30 Convergence of the average relative excess travel time 



 91 

 
 

Figure 3.31 Convergence of the route search and switching behavior 
 

Similarly, not being perfectly rational also indicates travelers’ limited capability of identifying and 
switching to the theoretically shortest paths. In this small demonstration model, only a small 
percentage of travelers are able to identify time-dependent (TD) shortest paths as their alternative. 
Overall, there are only 74.2 percent of travelers that have ever tried or used TD shortest paths 
before they stopped behavioral adjustments. It is believed that this number is even higher than 
normal situations; in this small demonstration network, there are a limited number of alternative 
paths. In a much larger network representing real-world situations, there often exist a large number 
of alternative paths between each OD pair. It is expected that travelers cannot always identify a 
TD shortest path when they plan their daily travels.  
 
Other than the behavioral foundation and the convergence property, another merit of the proposed 
AgBM-DTALite lies in its superior computational efficiency when compared to typical 
disaggregated travel demand models. Two unique characteristics of the integrated model ensure a 
promising computational performance:  
 

• Without the time-consuming log-sum calculation, learning, searching and decision rules 
can be executed within relatively shorter CPU time.  

• BUE changes the way of defining relative gaps and thereby reduces the number of 
simulation iterations. 

It is important to note that the second characteristic does not differ with respect to the size or the 
scale of the system. Unlike DTA models that have an exponentially increasing number of 
alternative paths w.r.t. network size, AgBM-DTALite assumes agents neither have the capability 
nor are willing to consider every alternative. BUE only relies on the individual’s travel experience 
and the information gathered to determine the start and stop of each search. Therefore, AgBM-
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DTALite can maintain its computing performance even if applied to a very large-scale 
transportation analysis.  

The integration of SILK-AgBM and DTALite has been demonstrated in this section. 
Multidimensional behavioral modeling and prediction are conducted by SILK-AgBM. Time-
dependent traffic dynamics are simulated using DTALite traffic simulator. This integrated model 
is able to capture day-to-day behavioral adjustment in response to the evolving traveling 
conditions. Based on the SILK travel behavioral theory, another more behaviorally realistic 
equilibrium, BUE, is defined to replace UE and DUE. This newly defined equilibrium and its 
convergence property are also demonstrated in this illustration example.  
 

3.8  Applications of SILK AgBM-DTALite 
 
This chapter describes the applications of SILK AgBM-DTALite integrated modeling for 
MITAMS. As elaborated in the previous chapters, the SILK AgBM-DTALite integrated model 
emphasizes individual-level Search, Information acquisition, Learning, and Knowledge updating 
(SILK), which are collectively modeled by an agent-based model (AgBM). It is then integrated 
with a lite-weighted traffic simulation engine, DTALite, wherein second-by-second traffic 
dynamics are simulated. This integrated modeling system has several advantages. First, it is a truly 
agent-based simulation with well-represented traffic dynamics and multi-dimensional travel 
behavioral sensitivities, including departure time adjustments, route changes, modal shifts, and en-
route diversion. Second, several unique features of the integrated model ensure a relatively more 
efficient computational performance. The behavioral user equilibrium (BUE) embedded in the 
SILK-AgBM presumes a behaviorally sound converging process, which largely reduces the 
number of iterations for the system to reach equilibrium. The DTALite traffic simulator employs 
parallel computing technique and an efficient traffic simulation engine, which enables large-scale 
computation for transportation networks with much greater size.  
 
In order to demonstrate the capabilities of the SILK AgBM-DTALite, and showcase how it can be 
applied to different transportation planning and operations analysis, the research team presents two 
application studies in this chapter: 1) Prince George Plaza road-diet project; 2) dynamic ramp 
metering on MD-100 Corridor. 
 
3.8.1 Methodology 
Agent-based travel behavioral models are capable of mimicking and simulating travel behavior 
changes of each user in the system. SILK-AgBM is an agent-based travel behavioral model system 
that emphasizes the role of Searching, Information, learning and knowledge. It can also be 
efficiently interfaced with a dynamic traffic assignment model, such as DTALite. Once integrated 
with a traffic simulator, the system can be complete, given that the simulator can replicate all traffic 
conditions in the transportation network. The AgBM-DTALite framework is well-suited for the 
modeling and evaluation of various types of scenarios. While detailed modeling specifications can 
be found elsewhere in this final report, key features are highlighted as follows: 

• The DTALite module (i.e., an open-source Light-weight Dynamic Traffic Assignment and 
Simulation Engine, https://code.google.com/p/nexta/) can simulate the overall traffic 
evolution on a day-to-day basis, which provides the foundation of evaluating mid/long-

https://code.google.com/p/nexta/
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term transportation planning scenarios, such as future-year land development plans, road-
construction and transit-oriented development (TOD) strategies. It is also capable of 
simulating dynamic ramp metering by controlling the link attributes in a time-dependent 
manner (Zhou and Taylor, 2014). It simulates traffic dynamics in greater detail and 
estimates various time-dependent traffic conditions such as volume, density, etc. In a 
simulation environment, these pieces of information in a minute-by-minute setting are 
critical to modeling/controlling operational strategies dynamically, such as the ramp 
metering rates.  

 

 

Figure 3.32 The integrated model of SILK-AgBM and DTALite 

 
• Behavioral responses in departure time, travel mode, and route adjustments can be modeled 

and assessed with the integrated model of SILK-AgBM and DTALite. Between simulation 
days, agents arrange their daily or recreational itinerary based on knowledge and various 
information sources: previous experience, social network, mass media, real-time traffic 
data sources (e.g., Google, WAZE and INRIX), etc. Exogenous changes, such as the road 
diet construction and the implementation of ramp metering, may result in a different 
adjustment to the travel itinerary. AgBM models the travel behavior with the full 
consideration of search, information, learning, and knowledge. Within the same simulation 
day, traffic information is conveyed between AgBM and DTALite. Agents who possess 
real-time information could react to the dynamic ramp metering when driving (Xiong and 
Zhang, 2013). This en-route diversion is incorporated into this integrated model (Amini, et 
al., 2015). An agent’s travel experience under different scenarios will both inform and 
update their knowledge base, as well as alter their subjective beliefs/expectations about 
travel conditions. A higher expected gain compared to the search cost (modeled as the 
mental/physical effort spent on searching) will lead to behavioral adjustments.  
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• A Behavioral User Equilibrium (BUE, where all users stop seeking behavioral changes) is 
developed to guide the model convergence process. The existence of BUE indicates that 
travelers will only search and adjust their behavior in limited times when responding to 
different long-term and short-term scenarios. Compared to traditional user equilibrium or 
dynamic traffic assignment, this BUE process incorporates more behavioral dimensions 
(route choice, departure time, and travel mode choice) and is guaranteed to converge.  

 
3.8.2 Application 1: Transit Oriented Development (TOD) and Road-Diet 
Transportation Planning 
The integrated SILK AgBM-DTALite model is first applied to analyze a typical transportation 
planning scenario: a land use development plan. New land use development, such as new 
residential areas, commercial areas, and mixed land use areas will change the travel demand 
patterns by influencing the incoming and out-going traffic. In some cases, the scenario may also 
involve the removal, addition, and/or reconstruction of roadways. In addition to changing the 
origin-destination travel demand in the traditional travel demand analysis, these land use changes 
could lead to more dynamic and individual-level travel behavior changes, including modal shifts, 
departure time adjustments and route changes. This application applies the SILK AgBM-DTALite 
model in an analysis of a land use transportation planning scenario where transit oriented 
development (TOD) and road-diet are involved. The following subsections describe the scenario 
defined in this application, the applied models, and the numerical findings from AgBM-DTALite. 
 
3.8.2.1 Scenario definition 
Prince George’s (PG) Plaza in Prince George’s County, MD has long been a major destination for 
leisure, recreational, and commuting purposes. The plaza is a mixed-use development consisting 
of a shopping center, multimedia entertainment amenities, retailers, dining places, and a 
multimodal transportation hub with a Washington  Metrorail station and its associated park-and-
ride facilities. Recently, a transit oriented development (TOD) plan was proposed to the PG Plaza 
neighborhood. Several proposed roads and pedestrian paths would connect the community and 
enhance the accessibility and walkability. The major arterial, East-West Highway (MD-410), 
would undergo a road-diet re-construction, reducing the total number of traffic lanes from six lanes 
to four lanes. These developments have been proposed to calm traffic and encourage multimodal 
and eco-friendly travel. 
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Figure 3.33 On-site circulation network for the transit oriented development (TOD) and 
road-diet planning at the Prince George’s Plaza 

 
To apply SILK AgBM-DTALite and analyze the transportation impact of this proposed TOD and 
road diet plan, we must first define the three scenarios: 
 

(1) No-Build Scenario: this benchmark scenario is defined to set the baseline. The network 
and travel demand will be extracted from a regional transportation planning model (i.e., 
the Metropolitan Washington Council of Governments model), through a path-based 
subarea analysis method developed by the research team (Zhang et al. 2013). The models 
are calibrated and validated based on data collected from the year of 2015 using the 
calibration/validation framework (details can be found in the calibration/validation chapter 
of this report). 

(2) TOD/Road Diet without Behavioral Modeling: based on the No-Build Scenario, we 
redefine the transportation network based on the land development plan. Traveler’s 
multidimensional behavioral adjustments are not considered. 

(3) TOD/Road Diet with AgBM-DTALite: based on the No-Build Scenario, we redefine the 
transportation network based on the land development plan. The multidimensional travel 
behavioral adjustments of the travelers in the region will be modeled using the AgBM-
DTALite system, in order to assess the modal shifts, departure time changes and route 
adjustments of the impacted travelers. 

 
3.8.2.2 Model Components of the Application 
As r mentioned earlier, this network, along with the travel demand in the No-Build Scenario, is 
extracted from the MWCOG regional transportation planning model. The study contains over 
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55,000 travelers during the study time period (3 – 7 p.m.). This small to mid-size transportation 
network involves 640 links (major arterials, minor arterials, collectors, local roads and 
neighborhood roads), 228 nodes (i.e., intersections with or without signals/signs), and 81 traffic 
analysis zones (TAZ, 56 internal TAZs and 25 external TAZs).  
 

 
 

Figure 3.34 The transportation network for the SILK AgBM-DTALite Application 1 
 
The transportation system in this application also includes multiple bus lines and the D.C. 
Metrorail, which can be accessed from the Prince George’s Plaza Metro Station. These public 
transit options are included using the General Transit Feed Specification (GTFS) data, including 
the information of transit line geometry, schedule, station nodes, etc. This is used to produce transit 
skims (travel time and costs) for the SILK AgBM-DTALite (i.e., agents in the model could learn 
the transit skims information through their own experience and make a travel behavior decision 
according to the learning). Walking and biking skim information is presumed for trips with 
distance shorter than three miles and five miles, respectively. These modeling components are then 
plugged into the integrated AgBM-DTALite.  
 
3.8.2.3 Results 
Overall, PG Plaza could face additional traffic and higher congestion from land use development 
and the road diet. However, travelers may adapt by adjusting their own behavior, such as switching 
to shoulder hours instead of peak hours, switching to public transit or active modes etc. If there is 
an organic mechanism that functions well in incentivizing peak spreading, smart-mobility travel 
options and eco-friendly travel, the negative impact on the roadway system can be greatly 
mitigated. 
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Table 3.8 Simulated Traffic Impact Summary of Application 1 

 

Scenarios: No-Build 
Scenario 

TOD/Road Diet 
Without 

AgBM-DTALite 

TOD/Road Diet 
With 

AgBM-DTALite 

Network-Wide Avg. 
Travel Time (min.) 6.36 6.58 6.41 

Difference - +3.5% +0.8% 

 
 
The behavioral user equilibrium (BUE) has been demonstrated in this application. The higher level 
of congestion in the defined TOD/Road Diet scenario results in higher initial search gain for many 
agents. Therefore, over 70 percent of agents are searching for new solutions. The PG Plaza region 
is usually very congested during p.m. Peak Hours. Travelers are having difficulty in identifying 
promising alternatives. As the model predicts, significantly fewer agents have made decisions to 
switch to new alternatives. As time goes by (day-by-day traffic evolution and agent-based 
learning), agents reach satisfaction either because a more promising travel alternative has been 
identified or because of the decreasing expectation on travel conditions after excessive searching. 
After about 40 iterations (40 simulation days, representing roughly 8 weeks), only a small number 
of users are still actively searching for alternatives. The integrated SILK AgBM-DTALite reaches 
convergence after 46 simulation iterations. This prediction suggests that it could take about two 
months for the travelers in PG Plaza region to fully adapt to the TOD and road diet, if the proposed 
plan is to be realized. 

 
 

Figure 3.35 The convergence of the AgBM-DTALite for application 1 
 
This integrated modeling system can simulate travelers’ multidimensional behavioral responses. 
Changing route and changing departure time are the most significant ways of behavioral adaptation. 
A small percentage of agents has been considering modal shifts. At BUE, 0.7 percent of the agents 
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have changed from car/carpool to other modes (0.34 percent switch to public transit, 0.21 percent 
switch to walk, and 0.15 percent switch to bike). 

 
 

Figure 3.36 The multidimensional behavioral responses predicted by SILK AgBM-
DTALite in application 1 

 
3.8.3 Application 2: Real-Time Ramp Metering Control for MD-100 Corridor 
 
3.8.3.1 Algorithms for Real-Time Ramp Metering Rates 
Based on the integrated AgBM-DTALite modeling framework, a dynamic ramp metering control 
module is added to the system. The control algorithm employs the time-dependent inputs produced 
by the dynamic traffic simulation to control the metering rates of those affected ramps. Then, 
simulated traffic dynamics are fed to the agent-based travel behavioral model to update the travel 
behavior decisions. While the process of developing the linkage between dynamic traffic 
assignment models and real-time ramp metering control  is documented in (Zhu et al., 2017) in 
detail, the research team chose to outline only the key components in this paper. The dynamic 
ramp metering rate of a particular freeway on-ramp is controlled by a series of equations derived 
using the ALINEA algorithm. Based on the dynamic traffic assignment performed in DTALite, 
minute-by-minute density, queue length and volume of each link are simulated. These pieces of 
information are then employed in ALINEA. The employed ALINEA algorithm estimates the time-
dependent ramp metering rate r(t) at time t: 
 ( ) ( ) ( )1 R outr t r t K O O t = − + − 



 (1-a) 

 ( )min maxs.t.    r r t r≤ ≤  (1-b) 
 
In this formulation, KR denotes the regulatory parameter; O


 denotes the critical occupancy; Oout 

denotes the downstream occupancy; and rmin and rmax are the predefined minimum metering rate 
and maximum metering rate, respectively. ALINEA/Q algorithm extends the ALINEA method to 
further consider the queue length on the freeway mainline. 

 ( ) ( ) ( )1' 1r t w w t d t
T

= − − + −  


 
(2-a) 

 ( ) ( ) ( )'' 1 'R outr t r t K O O t= − + −    (2-b) 
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 ( ) ( ) ( )}{min maxs.t.    max ' , ''r r t r t r t r≤ = ≤
 (2-c) 

 
In this formulation, T denotes the time interval; w  denotes the maximum permissible queue length 
on ramp; w denotes the current queue length on ramp; and d denotes the demand flow entering a 
ramp. This formulation allows ALINEA/Q to further consider the required entering rate (r’) from 
ramps to freeway mainline in order to prevent excessive queues. 
 
3.8.3.2 Application Network, Subarea, and Ramp Metering Locations 
The integrated AgBM-DTALite model has been applied to the Washington, D.C. and Baltimore 
Metropolitan Regions shown in Figure 3.37, including the majority of Montgomery County, Prince 
George’s County and Howard County. and part of Anne Arundel County, Frederick County and 
Baltimore County. Critical corridors in the region, such as I-95, I-495 (the Capital Beltway), I-695 
(the Baltimore Beltway), as well as the toll facility (MD-200, the Intercounty Connector) are all 
included in the model. The simulation system takes care of nearly 10,000 links, 4,300 nodes, 712 
traffic analysis zones and 2 million agents. The initial origin-destination travel demand information 
is extracted from the regional transportation planning model developed by the Metropolitan 
Washington Council of Government (MWCOG). Calibration methodology and results are 
documented in details in the authors’ other working papers (Lee et al, 2017; Zhu et al, 2017). The 
mean squared error (MSE) rate after calibration is controlled at 15.3 percent. The computational 
time for running this simulation system is around 600~720 sec per iteration on a regular server (8-
core CPU and 16GB RAM). It may take 150 to 200 minutes for the entire system to reach 
convergence (i.e., BUE). 
 

 
 

Figure 3.37 Regional network and the subarea cut for the ramp metering analysis 
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This large-scale regional model is used as the basis for the ramp metering analysis. MD-100 is one 
of the critical arterials serving east-west travelers in the Baltimore-Washington commuter corridor. 
The team focuses on the subarea near MD-100 (the area is identified by the square in Figure 3.38) 
in order to use the agent-based microsimulation to quantify the direct impact of ramp metering. 
The subarea model involves a number of highly congested roadways including I-95, MD-100, US-
1, MD-32, and MD-295 (Zhu et al., 2017) and over two hundred thousand travelers in the p.m. 
peak hours (4:00-7:00 p.m.) under the direct influence of the ramp metering control scenarios. 
 
Four on-ramps to MD-100 are metered. On MD-100 Westbound and Eastbound, the ramp metering 
system controls the on-ramps linked to Washington Blvd (US Route-1) and Coca-Cola Dr. Those 
are heavily used on-ramps, especially during peak hours. 
 
 

 
 
Figure 3.38 A detailed layout of the ramp metering locations and local-access and freeway-

mainline traffic under the impact 
 
 
Under the influence of ramp metering, local-access travelers from US Route-1 and Coca-Cola Dr. 
are more likely to face a higher level of congestion than before. The effective ramp meters can 
cause excessive delays on the ramps and the on-ramp queues may even spillback to local roads. In 
contrast, freeway mainline travelers who travel through this area via MD-100 have a stronger 
possibility of light traffic. Since the meters restrain the incoming vehicles, the vehicle density is 
reduced and disturbance from weaving, merging etc. is also mitigated. How will these different 
agents respond to the ramp metering control? What are the impacts on their short- or long-term 
behaviors? These findings can be obtained from the simulation and will be summarized in the 
following sub-sections. 
 
3.8.3.3 Dynamic Ramp Metering and Within-Day En-Route Diversion Responses 
Route changes and dynamic en-route diversion are modeled on a minute-by-minute basis. The 
agent-based microsimulation assumes that 19.8 percent of the agents possess real-time traffic 
information. This number is based on a parallel travel behavior study conducted by the research 
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team (Xiong et al., 2016). Summarized from 2,050 representative samples, it finds that 19.8 
percent of the daily travelers residing in D.C.-Baltimore metropolitan regions are accessing real-
time traffic information via smartphone apps, radio and other information sources while traveling. 
Therefore, these travelers can dynamically switch routes if they observe notable delays on their 
normal routes. This percentage is presumed in the simulation. It can be gauged when ground truth 
data on information-provision rate was observed or obtained. Based on the real-time traffic 
information, agents in the simulation model will respond and make an en-route diversion decision 
(simulated en-route diversion rates at the four metered ramps are illustrated in Figure 3.39). This 
decision is governed by a set of decision rules estimated and calibrated based on actual behavioral 
data (Xiong and Zhang, 2013). A positive en-route diversion rate (i.e., the percentage of agents 
who change routes to divert from this interchange) indicates that more agents decide not to use the 
ramp and dynamically switch to other routes. A negative rate indicates more agents are switching 
their route to the particular ramp. 
 
It is preferable that the AgBM-DTALite model does not lose too much resolution in en-route 
diversion rates. We can observe this kind of fluctuation minute-to-minute and over longer periods 
as well. This can be best explained by the behavior of well-informed travelers, who regularly 
update their information based on the current traffic conditions and make diversion decisions 
dynamically. When the on-ramps are controlled under a higher metering rate, resulting in longer 
on-ramp queues, more travelers will divert to other alternatives. This leads to a positive en-route 
diversion rate and in return, helps the congestion dissipate. The highly-congested freeway 
mainlines of MD-100 and the ramp metering control, in general, encourage en-route diversion (the 
mean diversion rates are positive in three out of the four on-ramps). Nevertheless, after a certain 
amount of time, the higher metering rate will have an enduring effect in managing the incoming 
flows to the freeway segments. Reduced density on the freeway mainline will trigger a decreased 
metering rate. The mitigated congestion on the freeway mainline, as well as the dissipated on-ramp 
queues, will again attract informed travelers to utilize these on-ramps. This will dynamically lead 
to a negative diversion rate. 
 
Another interesting finding from the agent-based simulation is the spatial correlation of the 
diversion behavior. The most obvious case is ramp 3 and 4 between 6 p.m. and 6:30 p.m. ramp 4 
is adjacent to ramp 3 and at the downstream. Between 6 p.m., and 6:30 p.m., a positive and 
significant diversion rate is observed on Ramp 3. Meanwhile, agents show a negative diversion 
rate on ramp 4. One explanation could be that the high diversion rate at ramp 3 (10-15 percent) 
results in improved traffic conditions on MD-100 downstream segments, and therefore, agents 
who have access to real-time information are dynamically re-routed to MD-100 via ramp 4, 
causing a rebounding higher ramp usage. 
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Figure 3.39 Agents’ en-route diversion rates at the freeway on-ramps where ramp metering 

control is effective 
 
3.8.3.4 Day-to-Day Departure Time Shifts 
One unique aspect of applying the AgBM-DTALite model to evaluate ramp metering control, is 
that the day-to-day travel behavioral adjustments can be captured. This agent-based 
microsimulation sheds light on how travelers adapt to newly built infrastructures and 
implementations. Besides en-route diversion, another significant behavioral change in response to 
dynamic ramp metering control is day-to-day departure time adjustment. The two subgraphs show 
the influences on local-access travelers and freeway mainline travelers, respectively. Departure 
time adjustments in the short-term, mid-term and long-term are all displayed. The light blue curve, 
labeled “Before RM,” represents the status-quo departure time pattern (i.e., number of travelers 
departing at each simulation time period) before ramp metering (RM) is implemented. The 
departure time pattern of the first day of ramp metering and the pattern after one week’s practice 
is also displayed. Generally, it is observed that travelers’ departure time patterns on the first day 
of ramp metering are similar to those in the before-RM scenario, but become distinctly different 
after one week’s practice. Finally, the orange curve, “BUE of RM”, denotes the pattern after the 
model reaches convergence and behavioral user equilibrium (BUE) is reached. It implies that 
travelers may keep adjusting their departure time for a longer period than one week. 
 

330pm 4pm 430pm 5pm 530pm 6pm 630pm 7pm

-0.05

0

0.05

En-Route Diversion Rate at Ramp 1

Time of Day

E
n-

R
ou

te
 D

iv
er

si
on

 R
at

e

Mean = 0.0042

 

 
Diversion Rate
Mean Value

330pm 4pm 430pm 5pm 530pm 6pm 630pm 7pm
-0.1

-0.05

0

0.05

0.1

En-Route Diversion Rate at Ramp 2

Time of Day

E
n-

R
ou

te
 D

iv
er

si
on

 R
at

e Mean = 0.0049

 

 
Diversion Rate
Mean Value

330pm 4pm 430pm 5pm 530pm 6pm 630pm 7pm
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
En-Route Diversion Rate at Ramp 3

Time of Day

E
n-

R
ou

te
 D

iv
er

si
on

 R
at

e Mean = 0.022

 

 
Diversion Rate
Mean Value

330pm 4pm 430pm 5pm 530pm 6pm 630pm 7pm

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
En-Route Diversion Rate at Ramp 4

Time of Day

E
n-

R
ou

te
 D

iv
er

si
on

 R
at

e

Mean = -0.028

 

 
Diversion Rate
Mean Value



 103 

Agent characteristics such as preferred arrival schedule, flexibility and departure time search scope 
are incorporated in the integrated AgBM-DTALite model. The simulation result suggests quite a 
few travelers will change departure time to avoid the longest ramp delays appearing at around 5:30 
p.m. On the first day of the exercise, there is a slight increase in travelers departing in the first half 
of the peak hour. One week after the RM implementation, a significant number of travelers decide 
to either depart earlier, at 5 p.m., or later, after 6 p.m., to avoid the emerging delays. Hence the 
number of travelers depart at 5:30 p.ms—the previous peak time—has dropped significantly. Last 
but not least, the convergence line leads to a milder pattern shift than the one-week change, and to 
a flatter and smoother departure time distribution, compared to the status-quo. 
 
The agent-based model tracks different heterogeneous agent groups, including the freeway 
mainline users, in comparison to local-access travelers. Figure 3.40 (b) reveals the changes of 
departure patterns of those users on the MD-100 corridor. The freeway users are expected to 
benefit from the RM scenarios resulting from reduced incoming flows at the affected on-ramps. 
Mitigated congestion level during the p.m. peak (4-7 p.m.,) has encouraged travelers who 
previously departed late in the status-quo model to leave earlier. After one week, a large number 
of travelers who initially departed between 6 p.m. and 7 p.m. have shifted to an earlier time (similar 
to an inverse process of peak spreading). When the new equilibrium under the RM is reached, the 
p.m. peak is pushed up to 4:30 p.m. The overall travel demand pattern is distributed more evenly. 
 
Although travelers from local accesses and on the mainline have distinguished departure patterns, 
it can be derived from both figures that the ramp metering application on MD-100 encourages 
travelers to depart ahead of or after the peak hour, thus contributing to the mitigation of congestion 
on the mainline. 
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(b) Departure Time Adjustment of the MD-100 Freeway Mainline Travelers 
 

Figure 3.40 AgBM-DTALite simulated day-to-day departure time adjustments and peak 
spreading behavioral patterns 

 
3.8.3.5 Regional Traffic Impact of the Dynamic Ramp Metering 
Ramp metering analyses are typically conducted at the corridor level. With the integrated AgBM-
DTALite model, we are able to extend the evaluation to the regional level, which is rarely seen in 
ramp metering analyses. In this section, we present the traffic impact of the dynamic ramp metering. 
Travel time is employed as the measure of performance in the case study. 
 
The corridor-level traffic impact of the dynamic ramp metering control is illustrated in Figure 3.41. 
The effectiveness of ramp metering using ALINEA or ALINEA/Q is evident. During the p.m. 
peak, the average travel times on MD-100 corridor have been shortened by 1.32 minutes on the 
Westbound lanes and by 0.74 minute on the Eastbound lanes. A maximum decrease of 20 percent 
is realized on westbound MD-100 at 6:00 p.m. ALINEA and ALINEA/Q tend to present similar 
corridor-level travel times, since the two algorithms become differentiated only if there are queues 
exceeding the predetermined threshold on the controlled ramps. Although it is minor, ALINEA/Q 
leads to slightly longer corridor travel times on average than ALINEA, while it induces less 
waiting times for drivers on the controlled on-ramps.  
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Figure 3.41 MD-100 travel time change 

 
Besides corridor-level direct impact, the integrated model also allows the evaluation of indirect 
and network-wide traffic impact. Table 3.9 summarizes the overall network performance. In 
addition to the substantial travel time decrease on MD-100, the average travel times among the 
network also experience moderate improvements. Although applying ALINEA or ALINEA/Q will 
only lead to about 0.6 percent travel time saving at the network level, aggregating that savings for 
all simulated agents in the region could result in 28,000 minutes of savings daily (or 170,333 hours 
of savings annually). Considering the average value of commuting travel times in the D.C.-
Baltimore region, the ramp metering control scenarios considered in the study can bring significant 
indirect benefit for travelers, which agrees with the promising potential of applying dynamic ramp 
metering control in a relatively congested metropolitan area. 
 

Table 3.9 Simulated Traffic Impact Summary of the Dynamic Ramp Metering Control 
Scenarios: Status-Quo 

(no ramp metering) 

Ramp Metering with 
ALINEA 

Ramp Metering with 
ALINEA/Q 

 Time Difference Time Difference 
Network-Wide Average 
Travel Time (min.) 23.03 22.89 -0.61% 22.90 -0.56% 

MD-100 (WB) Average 11.76 10.44 -11.2% 10.42 -11.4% 
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Travel Time (min.) 
MD-100 (EB) Average 
Travel Time (min.) 6.34 5.60 -11.7% 5.59 -11.8% 
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       4. Integrated InSITE-DTALite 
 
This integrated model is being developed as part of the MITAMS C10 project, and has close ties 
with two agencies: Maryland State Highway Administration (MD SHA) and the Baltimore 
Metropolitan Council (BMC). This integrated model is composed of the InSITE activity-based 
model (ABM) system, and the mesoscopic traffic simulator, DTALite. These two components are 
described in this section. In addition, the key innovations of the integrated model are highlighted.  
 
The primary objective of the model integration is to produce a working model of the Baltimore 
region that is disaggregate for auto travel on both the demand and the supply side. This model is 
intended to be “application ready,” meaning that it has been validated and includes all functionality 
required for typical planning analyses. Therefore, the integration pursued between InSITE and 
DTALite falls in the sequential integration paradigm. In this paradigm, the travel demand model 
(InSITE) and the DTA model (DTALite) are run in iterations, with a single “big loop” consisting 
of an iteration of the travel demand model followed by a run of the DTA model. The travel demand 
information (e.g., agents with their activities and travel decisions as well as characteristics) is 
passed to the DTA model within each big loop, and travel time information resulting from the 
dynamic assignment is passed back to the travel demand model for use as input (e.g., update 
activity pattern choices) in the next big loop. Note that DTA models themselves are run iteratively, 
and so there are several “small loops” of the DTA run within each “big loop.” A number of “big 
loops” are run until a measure of convergence is achieved, in which the change in travel times (or 
some other measure) from one big loop to the next is within a specific tolerance. The data exchange 
between InSITE and DTALite is such that an agent is preserved during the exchange of data from 
InSITE to DTALite and vice versa. Thus, the integrated InSITE-DTALite model is fully 
disaggregated. There is also the tight integration paradigm in which both the travel demand model 
and DTA model share information continuously (i.e., the analyst specifies the temporal resolution 
for the exchanges) within each big loop. This paradigm is not considered for the integrated model 
InSITE-DTALite. 
 

4.1  BMC InSITE ABM 
 
InSITE is an activity-based model system composed of interconnected, discrete choice models 
representing choices at distinct dimensions (e.g., travel mode, destination) that focus on decisions 
related to daily activity and mobility for a typical weekday. InSITE adopts the day activity-
schedule approach, where a day activity schedule is defined through the concepts of activity pattern 
and activity schedule. The activity pattern defines the participation in activities as primary and 
secondary. Primary activities are the anchors (e.g., home-to-work trip and work-to-home trip 
represent a tour, with work as primary activity) of a tour, and secondary activities are intermediate 
stops within a particular tour (i.e., stopping for shopping during the work-to-home half of the tour). 
The activity schedule adds detailed information to the activity pattern about tours, such as timing, 
travel mode, destination of primary activity and the stops for secondary activities within the tours. 
 
The model covers an area including the entire BMC region, plus the District of Columbia and the 
Maryland portion of the region covered by the Metropolitan Washington Council of Governments 
(MWCOG). The portion of Maryland in the model region consists of Baltimore City and Anne 
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Arundel, Baltimore, Carroll, Harford, Howard, Frederick, Montgomery, and Prince George’s 
Counties. 

InSITE models travel for a typical weekday. The choices made by households and individual 
travelers are simulated using probabilities from a series of logit models. The model components 
and the sections of this report where they are discussed are listed in Table 4.1; Figure 4.1 shows 
the structure of the InSITE. (In the interest of keeping the figure readable, the logsum relationships 
from subsequent to previous model steps are not shown in the figure, nor are the nonactivity-based 
components, such as trip assignment.) 

Table 4.1 Components of InSITE 

Model Name 
 

Level 
 

What is Predicted 
Synthetic Population Generator Households Household size and composition, household income, person age, gender, 

employment status, student status 
Regular Workplace Location Workers Workplace location zone 
Regular School Location Students School location zone 
Auto Ownership Households Number of autos owned 
Transit Pass Ownership Households Whether the household owns a transit pass 
E-ZPass Ownership Households Whether the household owns an E-ZPass transponder 
Household Class Membership Households Class in which household falls, for Daily Activity Pattern Model 
Daily Activity Pattern Person Day 0, 1, or 2 tours for each activity purpose 

0, 1, or 2 stops for each activity purpose 
Joint Travel Households Number of fully joint tours with 2 or more household members 

Which household members participate in each joint tour  
School Escorting Person 

(Household) Day 
On which half tours a student is escorted to/from school 
Which household member escorts the student 
Whether escorting is done on a mandatory tour 

Work Tour Destination Choice Work Tours For work tours – regular workplace or other work location (and its zone) 
Work-Based Sub-tour Generation Work Tours Number and purpose of any sub-tours made during a work tour 
Work Mode Choice Work Tours Main tour mode 
School Mode and  
Time-of-Day Choice 

School Tours Main tour mode, the time period arriving at school and the time period leaving 
school (all school tours are to regular school location) 

Work Time-of-Day Choice Work Tours The time period arriving at work, and the time period leaving work 
Other Tour  
Time-of-Day Choice 

Other Tours Time period arriving at the primary destination and the time period leaving the 
primary destination 

Other Tour Mode and Destination 
Choice 

Other Tours Primary destination zone and main tour mode 

Intermediate Stop Generation Half-tour Number and activity purpose of any intermediate stops made on the half-tour, 
conditional on day pattern 

Intermediate Stop Location Trip Destination zone of each intermediate stop, conditional on tour origin and 
destination, and location of any previous stops 

Trip Mode Choice Trip Trip mode, conditional on main tour mode 
Trip Departure Time Trip Departure time, conditional on time windows remaining from previous choices 
Special Generators Zone Number of trips, trip end location, mode choice 
Commercial Vehicle Zone Number of trips, trip end location 
External Travel Zone Number of trips, trip end location 
Highway Assignment Vehicle Trip Table Link volumes and travel times/speeds 
Transit Assignment Person Trip Table Transit trips/boardings by route/stop 
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Source:  Cambridge Systematics, Inc. 

Figure 4.1 InSITE model structure 

4.1.1 Model Inputs 
The four main inputs into InSITE are: 

(1) Synthetic population: the synthetic population generator, PopGen, developed at 
Arizona State University (by a team led by MITAMS team member Ram Pendyala) 
produces a synthetic population representing every person and household in the model 
region. 

(2) Land use parcel database: the parcel database includes information on the land use 
type and size (square footage and/or residential units) for all land parcels in the model 
region. 
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(3) Zone level socioeconomic and other data: the model region is divided into traffic 
analysis zones (TAZs), which are used as the analysis units for some model 
components. 

(4) Highway and transit networks: these are standard networks representing the major 
roadways in the region and all public transit routes. They are maintained using the 
Cube software, a product of Citilabs for which BMC, SHA and members of the 
consultant team have licenses. In the original InSITE model, which uses static 
equilibrium highway assignment, the highway network is used for the highway 
assignment process; for the integrated model, this will be replaced by the DTA. The 
static highway network is still expected to be used to create the initial travel time, 
distance and cost “skims” that are used as inputs to the demand model components. 

4.1.2 Model Structure 
As shown in Figure 4.1, the model begins by simulating long term choices that are made before 
the travel day, including auto ownership, workplace location for workers, school location for 
students, transit pass ownership, and E-ZPass toll transponder ownership. 

Another feature of InSITE is a class membership model that is applied prior to the daily activity 
pattern model. The class membership model determines which segment an individual household 
belongs to via a multinomial logit model. Each class membership model alternative represents a 
distinct segment, and the model uses attributes of the household (such as household size and 
income) to generate probabilities that the household is a member of a specific class. The parameters 
of the daily activity pattern model, the fully joint tour model and the class membership model were 
estimated simultaneously, since there are components of each model that affect one another. A 
more in-depth look at the class membership model is documented by Lemp (2014). 

The next set of models estimates a daily activity pattern for each person. Whether the person has 
work tours (with or without stops), has school or university tours, has non-mandatory activity tours 
only, or does not travel within the region is simulated. If the simulated pattern has mandatory tours, 
they are generated.  For students making school tours, InSITE simulates whether they are escorted 
by a household member and if so, by whom. At this point, the destinations and times of day for 
the mandatory tours are simulated. 

Next, fully joint tours among household members are simulated, including who participates, the 
activity purpose, the destination and the time of day. After the details of the mandatory and joint 
tours are known, individual non-mandatory tours are simulated, with their destinations and times 
of day. The final tour level models are the generation of stops for each tour and tour level mode 
choice. 

The stop and trip level choices are simulated next. These include destination choice for each stop, 
mode choice for the trips between stops (conditional on tour mode), and the times for the stops.  
From the results of these models, auto vehicle and transit person trip tables are assembled for input 
to highway and transit assignment, respectively. 
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4.2  BMC InSITE Validation and Sensitivity 
Testing 
 

This section summarizes the validation of the activity-based model developed for the Baltimore 
region. This model was developed for the Baltimore Metropolitan Council (BMC) by a team led 
by Cambridge Systematics, Inc. (CS), and including Gallop Corporation, AECOM and Sabra-
Wang Associates.  The model estimation results are documented by Cambridge Systematics, Inc. 
(2016). User documentation is provided in a separate document. 

The model is applied disaggregately using a synthetic population, generated by the PopGen 
synthetic population generator (Konduri and Pendyala, 2015). It represents the population of the 
model region, which includes the entire BMC region, the District of Columbia and the Maryland 
portion of the region covered by the Metropolitan Washington Council of Governments 
(MWCOG). The portion of Maryland in the model region consists of Baltimore City and Anne 
Arundel, Baltimore, Carroll, Harford, Howard, Frederick, Montgomery and Prince George’s 
Counties. 

The activity and travel choices made by each household and person in the synthetic population are 
realized through Monte Carlo simulation, with the choice probabilities determined by the 
individual model components. 

A model validation plan (Cambridge Systematics, Inc., 2014) was developed prior to model 
development. This plan outlined the process that was followed for the model validation and the 
specified the tests performed by the research team. A few tests changed slightly or were more 
specifically defined for the final model validation, but in general, the plan was faithfully followed. 
The tests in the plan included verification of the input highway, the transit skim data and the 
synthetic population data; checks of the results of all model components compared to the 2007-
2008 regional household survey data set; checks of the highway and transit assignment; and tests 
of the sensitivity of the model to changes in input data.   

4.2.1 Model Component Validation 
The tests consisted of comparisons of model results for various market segments to the expanded 
household survey data. These comparisons were done in Excel spreadsheet files. The model 
application software, TourCast, outputs .dbf files that were imported into a relational database and 
processed with stored procedures using MySQL. The processed summaries were exported to 
comma delimited files that can be read directly into the Excel spreadsheets, which were populated 
in advance with the survey data results. The model results presented in this chapter are based on a 
model application with three iterations of speed feedback. 

The comparisons described in this section reflect model calibration adjustments. In some cases, 
model parameters were adjusted to produce more reasonable results, although there was not a 
universal attempt to match all results from the expanded household survey for all market segments 
by adjusting model constants or other parameters. This type of adjustment was only made when 
the uncalibrated model results did not appear reasonable and the survey data results were based on 
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a substantial number of observations. The specific calibration adjustments are documented in the 
Excel files. 

Because of the extensive number of comparisons, the spreadsheet files themselves are incorporated 
as appendices to this report. The remainder of this chapter summarizes the validation results as 
presented in these spreadsheet files. 

4.2.1.1 Long-term Choice Models 
Vehicle Availability Model 
The vehicle availability model simulates the number of vehicles owned by each household in the 
synthetic population. The Excel file with the results of the vehicle availability model is 
VehicleAvailability.xlsm. On a regional basis, the number of households by number of vehicles 
owned matches well. 

Table 4.2  Vehicle Availability Model – Regional Validation 
 

 
Expanded Household 

Survey Data Model Results 
Percentage 

Point 
Difference 

Percentage 
Difference Vehicles Households Percentage Households Percentage 

0 231,695 11.2% 208,160 10.0% -1.2% -10.3% 
1 690,202 33.3% 652,543 31.4% -1.9% -5.6% 
2 753,072 36.3% 806,458 38.8% 2.5% 6.9% 
3+ 398,131 19.2% 409,036 19.7% 0.5% 2.6% 
Total 2,073,100  2,076,197    

 
Regular Workplace Location 
The regular workplace location model simulates whether each worker in the synthetic population 
has a regular workplace and the location of that workplace . The Excel file with the results of the 
regular workplace location model is UsualWork.xlsm.  

The more detailed comparisons in the Excel files show the following results: 

• The modeled percentage of household vehicle ownership closely matches the 
survey data for each county in the model region. The model slightly 
underestimates vehicle ownership in Carroll County, the smallest county in the 
model region. 

• Vehicle availability levels were compared for cross-classifications of household 
size (1, 2, 3, 4+) by income level (<$15,000, $15,000-$29,999, $30,000-
$49,999, $50,000-$99,999, >$100,000). The model results closely match the 
expanded survey data. 

• Vehicle availability levels were compared for cross-classifications of number 
of workers (0, 1, 2, 3, 4+) by income level (<$15,000, $15,000-$29,999, 
$30,000-$49,999, $50,000-$99,999, >$100,000). The model results accurately 
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match the expanded survey data, considering the relatively low number of 
households surveyed for many of the cells. 

• Vehicle availability levels were compared for cross-classifications of number 
of workers (0, 1, 2, 3+) by number of children (0, 1, 2+).  The model results 
accurately match the expanded survey data, again considering the relatively low 
number of households surveyed for many of the cells, especially those 
representing households with zero vehicles. 

 
Table 4.3 Percentage of Workers by Type with Regular Workplaces 

 Expanded household survey data Model 

Diff. 
Worker 
Status 

No Usual 
Workplace Total Percentage 

No Usual 
Workplace Total Percentage 

Full-time 317,530 2,143,942 14.8% 175,681 2,317,432 7.6% -7.2% 
Part-time 84,267 266,015 31.7% 72,338 339,193 21.3% -10.4% 
Total 401,796 2,409,957 16.7% 248,019 2,656,625 9.3% -7.3% 

 

While there are some differences in the distributions, the fits are good; the coincidence ratios are 
92 percent for both distance and time. The average tour times are 25.3 minutes (observed) and 25.5 
minutes (modeled); the average tour distances are 13.1 miles (observed) and 12.7 miles (modeled). 

The more detailed comparisons in the Excel files show the following results: 

• Full time workers have longer tour lengths than part time workers. The model 
results were a good match to the survey results in this case. 

• The distance between home and the regular workplace increases with income.  
In the survey data, this increase is a little steeper than in the model results. 

• The distance between home and the regular workplace increases as the home 
location becomes less urban; the survey data trend is reflected in the model 
results. 

• The modeled percentage of workers whose regular workplaces are in the same 
zone as their homes (the “intrazonal percentage”) is 1.8 percent, compared to 
2.0 percent in the survey data. 

• The modeled and observed intrazonal percentages are slightly lower for full-
time workers than for part-time workers. 
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Figure 4.2 Home to regular workplace tour length frequency distribution (distance). 
 

 
Figure 4.3 Home to regular workplace tour length frequency distribution (time). 

 

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
>=

10
0

Straight-Line Distance

Model

HHSurvey

0%

5%

10%

15%

20%

25%

30%

0 10 20 30 40 50 >=60

Time

Model

HHSurvey



 115 

School Location 
The school location model simulates the school location for each child in the synthetic population.  
The Excel file with the results of the school location model is SchLocation.xlsm. 

While there are some differences in the distributions, the fits are good; the coincidence ratios are 
82 percent for distance and 70 percent for time. The average tour times are 11.4 minutes (observed) 
and 11.5 minutes (modeled); the average tour distances are 6.0 miles (observed) and 6.0 miles 
(modeled). 

 

Figure 4.4 Home-to-school tour length frequency distribution (distance) 
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Figure 4.5 Home-to-school tour length frequency distribution (time). 

 
The more detailed comparisons in the Excel files show the following results: 

• Both the survey data set and the model results show that children between the 
ages 5 and 15 have shorter school trips than younger children, who have shorter 
trip lengths than students age 16 and older. This reflects that high school 
students often travel longer distances to school than younger children, and that 
pre-school children may travel farther to day care than the distance to 
elementary school. 

• The model results show a slight increase in trip length to school as income 
increases. This is generally true in the survey data, although the trend is not 
consistent (and seems illogical). 

• The highest percentage of students who go to school in their zone of residence 
is for students age 6 to 15, in both the survey data and model results. The overall 
percentage of students who attend school in their residence zone is 12 percent 
(survey) and 11 percent (model). 

Transit Pass Ownership 
The transit pass ownership model simulates whether each household in the synthetic population 
has a transit pass. The Excel file with the results of the transit pass ownership model is Transit 
Pass Ownership.xlsm. 

The modeled percentage of households with transit passes matches the observed percentages well 
within the BMC region. The modeled percentages are low in the MWCOG region, especially in 
Washington, D.C. 

 

Table 4.4 Comparison of Modeled and Observed Transit Pass Ownership by County 

 Survey Model Results   

County Yes No Survey Yes No Model Difference 

Baltimore City 24,120 228,088 10% 20,705 216,077 9% -0.8% 

Baltimore County 10,528 236,218 4% 14,516 295,706 5% 0.4% 

Anne Arundel 8,717 164,813 5% 7,727 190,810 4% -1.1% 

Howard 6,456 119,521 5% 4,729 100,455 4% -0.6% 

Carroll 1,415 96,741 1% 2,021 60,317 3% 1.8% 

Harford 1,515 122,941 1% 4,387 85,272 5% 3.7% 

Montgomery/Prince 
George’s/Frederick 111,908 665,605 14% 45,925 696,530 6% -8.2% 

D.C. 71,095 203,421 26% 26,310 234,828 10% -15.8% 

Total 235,754 1,837,348 11% 126,320 1,879,995 6% -5.1% 

BMC region 52,751 968,322 5% 54,085 948,637 5% 0.2% 
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E-ZPass Transponder Ownership 
The E-ZPass transponder ownership model simulates whether each household in the synthetic 
population has a transponder. The Excel file with the results of this model is E-ZPass 
Ownership.xlsm. 

It should be noted that the household survey data set did not include E-ZPass transponder 
ownership. Therefore, observed data for comparison was obtained by BMC from the Maryland 
Transportation Authority (MDTA). It provided the number of transponders owned by zip code. 
The number of “commercial” transponders (for example, the “Standard Business Plan”) was 
removed from the totals prior to comparison. 

The use of this alternate observed data source means that the observed data does not exactly 
correspond to the number of households with transponders. Most notably, the MDTA data set 
counts the number of transponders, not the number of households with transponders. If a 
household had more than one transponder, the MDTA data set would count multiple transponders.  
In addition, some households may own E-ZPass transponders obtained from agencies in other 
states. Furthermore, some commercial vehicles may have transponders that do not fall into the 
excluded categories, while some personal vehicles may have transponders that are counted in the 
commercial categories. There are also some differences between the survey period (2007-2008) 
and the relatively recent MDTA data set. 

The model results show some noticeable differences from the observed data by county. While 
some model calibration was performed, the model results were not adjusted too much, given the 
different nature of the MDTA data set. 

 

Table 4.5 Comparison of Modeled and Observed E-ZPass Transponder Ownership by 
County 

 Observed Modeled  

County Households 

Number 
of 

Passes 

% 
Households 
with Passes Households 

Number 
of 

Passes 

% 
Households 
with Passes 

% 
Diff. 

Baltimore City 252,208 66,654 26% 252,718 46,247 18% -8% 

Baltimore County 246,748 165,833 67% 318,820 151,812 48% -20% 

Anne Arundel 173,529 90,189 52% 202,188 148,250 73% 21% 

Howard 125,976 45,981 36% 107,719 75,412 70% 34% 

Carroll 98,156 9,816 10% 63,098 36,723 58% 48% 

Harford 124,455 80,360 65% 91,762 68,410 75% 10% 
Montgomery/Prince 
Georges/Frederick 777,512 177,348 23% 764,828 390,920 51% 28% 

DC 274,517 23,852 9% 275,064 46,614 17% 8% 

Total 2,073,100 660,033 32% 2,076,197 964,388 46% 15% 

BMC Region 1,295,588 482,685 37% 1,311,369 573,468 44% 6% 
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4.2.1.2 Daily Activity Pattern and Related Models 

Daily Activity Pattern Model 
The daily activity pattern model simulates whether each person in the synthetic population has 
mandatory (work, university or school) activities, has non-mandatory activities only, or makes no 
travel within the region (i.e., stays at home, is temporarily out of the model region, or has only 
external travel only between home and locations outside the model region).  If a mandatory activity 
pattern is chosen, the number of mandatory tours (zero, one, or two) is simulated, including 
whether any simulated work tours have stops. 

Excel files summarizes the results of the daily activity pattern model for each person type: 

• Senior - DAP_Senior.xlsm 

• Full-time worker - DAP_FTW.xlsm 

• Part-time worker - DAP_PTW.xlsm 

• Adult (university) student - DAP_Adult Student.xlsm 

• Non-working adult - DAP_NWA.xlsm 

• Child age less than 5 - DAP_Child1.xlsm 

• Child age 5-15 - DAP_Child2.xlsm 

• Child age 16 or older - DAP_Child3.xlsm 
 

The Excel files show the results segmented by various variables of interest, including county of 
residence, household size, income level, vehicle availability and gender.  These comparisons show 
only minor differences between the survey data and the model results (though in many cases, the 
large number of alternatives in the daily activity pattern model means that the survey data has few 
observations for several of the alternatives of many of the market segments). 

Table 4.6 Regional Comparison of Daily Activity Patterns 
Fulltime Worker 

Daily Activity Pattern Type 
Expanded household 

survey data                   Model Results 

Count Percentage Count Percentage 
1 Work Tour, No Stops 986,563 42.6% 955,922 41.2% 
1 Work Tour, with Stops 729,477 31.5% 783,134 33.8% 
2 Work Tours, No Stops 47,491 2.0% 36,614 1.6% 
2 Work Tours, Stops on One 36,882 1.6% 30,623 1.3% 
2 Work Tours, Stops on Both 10,098 0.4% 9,168 0.4% 
1 Univ. Tour/1 Work Tour, No Stops 5,966 0.3% 4,599 0.2% 
1 Univ. Tour/1 Work Tour, Stops on 

Work Tour 3,892 0.2% 3,355 0.1% 
1 School Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
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1 School Tour/1 Work Tour, Stops on 
Work Tour 0 0.0% 0 0.0% 

1 Univ. Tour 10,445 0.5% 10,477 0.5% 
2 Univ. Tours 0 0.0% 0 0.0% 
1 School Tour 0 0.0% 0 0.0% 
2 School Tours  0 0.0% 0 0.0% 
Non-mandatory Travel Only 244,707 10.6% 267,483 11.5% 

Stay at Home/Out of Area/ 
External Travel Only 241,912 10.4% 216,057 9.3% 
Total 2,317,432 100% 2,317,432 100% 

 

Table 4.7 Regional Comparison of Daily Activity Patterns 
Part-time Worker 

Daily Activity Pattern Type 
Expanded household 

survey data                   Model Results 

Count Percentage Count Percentage 
1 Work Tour, No Stops 72,243 21.3% 70,730 20.9% 

1 Work Tour, with Stops 62,267 18.4% 69,263 20.4% 
2 Work Tours, No Stops 3,353 1.0% 2,187 0.6% 
2 Work Tours, Stops on One 4,477 1.3% 3,047 0.9% 
2 Work Tours, Stops on Both 2,081 0.6% 1,532 0.5% 
1 Univ. Tour/1 Work Tour, No Stops 0 0.0% 1,724 0.5% 
1 Univ. Tour/1 Work Tour, Stops on 

Work Tour 108 0.0% 99 0.0% 
1 School Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 Univ. Tour 277 0.1% 405 0.1% 
2 Univ. Tours 0 0.0% 0 0.0% 
1 School Tour 0 0.0% 0 0.0% 
2 School Tours  0 0.0% 0 0.0% 
Non-mandatory Travel Only 136,425 40.2% 138,126 40.7% 

Stay at Home/Out of Area/ 
External Travel Only 57,963 17.1% 52,080 15.4% 
Total 339,193 100% 339,193 100% 

 

Table 4.8 Regional Comparison of Daily Activity Patterns 
Adult Student 

Daily Activity Pattern Type 
Expanded household 

survey data                   Model Results 

Count Percentage Count Percentage 
1 Work Tour, No Stops 19,694 7.6% 19,331 7.4% 
1 Work Tour, with Stops 19,338 7.4% 19,091 7.3% 
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2 Work Tours, No Stops  0.0% 0 0.0% 
2 Work Tours, Stops on One  0.0% 0 0.0% 
2 Work Tours, Stops on Both 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, No Stops 4,111 1.6% 3,989 1.5% 
1 Univ. Tour/1 Work Tour, Stops on 

Work Tour 2,076 0.8% 2,064 0.8% 
1 School Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 Univ. Tour 92,835 35.7% 91,869 35.2% 
2 Univ. Tours 4,127 1.6% 4,131 1.6% 
1 School Tour 0 0.0% 0 0.0% 
2 School Tours  0 0.0% 0 0.0% 
Non-mandatory Travel Only 75,908 29.2% 76,026 29.1% 

Stay at Home/Out of Area/ 
External Travel Only 41,699 16.1% 44,832 17.2% 
Total 259,788 100% 261,333 100% 

 

Table 4.9. Regional Comparison of Daily Activity Patterns 
Senior 

Daily Activity Pattern Type 
Expanded household 

survey data                   Model Results 

Count Percentage Count Percentage 
1 Work Tour, No Stops 8,322 1.8% 8,452 1.8% 
1 Work Tour, with Stops 6,859 1.5% 8,067 1.8% 
2 Work Tours, No Stops 838 0.2% 0 0.0% 
2 Work Tours, Stops on One 570 0.1% 0 0.0% 
2 Work Tours, Stops on Both 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 Univ. Tour 1,775 0.4% 791 0.2% 
2 Univ. Tours 0 0.0% 0 0.0% 
1 School Tour 0 0.0% 0 0.0% 
2 School Tours  0 0.0% 0 0.0% 
Non-mandatory Travel Only 272,942 59.7% 263,859 57.7% 

Stay at Home/Out of Area/ 
External Travel Only 165,985 36.3% 176,122 38.5% 
Total 457,291 100% 457,291 100% 
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Table 4.10 Regional Comparison of Daily Activity Patterns 
Non-working Adult 

Daily Activity Pattern Type 
Expanded household 

survey data                   Model Results 

Count Percentage Count Percentage 
1 Work Tour, No Stops 393 0.1% 467 0.1% 
1 Work Tour, with Stops 357 0.1% 472 0.1% 
2 Work Tours, No Stops 0 0.0% 0 0.0% 
2 Work Tours, Stops on One 0 0.0% 0 0.0% 
2 Work Tours, Stops on Both 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 Univ. Tour 587 0.1% 369 0.1% 
2 Univ. Tours 0 0.0% 0 0.0% 
1 School Tour 0 0.0% 0 0.0% 
2 School Tours  0 0.0% 0 0.0% 
Non-mandatory Travel Only 398,552 68.4% 397,174 68.2% 

Stay at Home/Out of Area/ 
External Travel Only 182,503 31.3% 183,910 31.6% 
Total 582,392 100% 582,392 100% 

 

Table 4.11 Regional Comparison of Daily Activity Patterns 
Child Age Less than 5 

Daily Activity Pattern Type 
Expanded household 

survey data                   Model Results 

Count Percentage Count Percentage 
1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 Work Tour, with Stops 0 0.0% 0 0.0% 
2 Work Tours, No Stops 0 0.0% 0 0.0% 

2 Work Tours, Stops on One 0 0.0% 0 0.0% 
2 Work Tours, Stops on Both 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 Univ. Tour 0 0.0% 0 0.0% 
2 Univ. Tours 0 0.0% 0 0.0% 
1 School Tour 125,930 37.3% 133,788 39.6% 
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2 School Tours  456 0.1% 0 0.0% 
Non-mandatory Travel Only 126,069 37.3% 132,190 39.1% 

Stay at Home/Out of Area/ 
External Travel Only 85,476 25.3% 71,953 21.3% 
Total 337,931 100% 337,931 100% 

 

Table 4.12 Regional Comparison of Daily Activity Patterns 
Child Age 5-15 

Daily Activity Pattern Type 
Expanded household 

survey data                   Model Results 

Count Percentage Count Percentage 
1 Work Tour, No Stops 365 0.0% 0 0.0% 
1 Work Tour, with Stops 167 0.0% 0 0.0% 
2 Work Tours, No Stops 0 0.0% 0 0.0% 
2 Work Tours, Stops on One 0 0.0% 0 0.0% 
2 Work Tours, Stops on Both 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, Stops on 

Work Tour 0 0.0% 0 0.0% 
1 School Tour/1 Work Tour, No Stops 701 0.1% 0 0.0% 
1 School Tour/1 Work Tour, Stops on 

Work Tour 457 0.1% 0 0.0% 
1 Univ. Tour 0 0.0% 0 0.0% 
2 Univ. Tours 0 0.0% 0 0.0% 
1 School Tour 513,502 70.1% 531,673 72.6% 
2 School Tours  10,047 1.4% 10,717 1.5% 
Non-mandatory Travel Only 125,639 17.2% 117,309 16.0% 

Stay at Home/Out of Area/ 
External Travel Only 81,658 11.1% 72,837 9.9% 
Total 732,536 100% 732,536 100% 

 

Table 4.13 Regional Comparison of Daily Activity Patterns 
Child Age 16-17 

Daily Activity Pattern Type 
Expanded household 

survey data                   Model Results 

Count Percentage Count Percentage 
1 Work Tour, No Stops 4,783 3.6% 5,042 3.8% 
1 Work Tour, with Stops 1,123 0.8% 1,654 1.2% 
2 Work Tours, No Stops 0 0.0% 0 0.0% 
2 Work Tours, Stops on One 0 0.0% 0 0.0% 
2 Work Tours, Stops on Both 0 0.0% 0 0.0% 
1 Univ. Tour/1 Work Tour, No Stops 0 0.0% 0 0.0% 
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1 Univ. Tour/1 Work Tour, Stops on 
Work Tour 0 0.0% 0 0.0% 

1 School Tour/1 Work Tour, No Stops 4,699 3.5% 5,789 4.3% 
1 School Tour/1 Work Tour, Stops on 

Work Tour 924 0.7% 934 0.7% 
1 Univ. Tour 0 0.0% 0 0.0% 
2 Univ. Tours 0 0.0% 0 0.0% 
1 School Tour 87,307 64.9% 86,685 64.5% 
2 School Tours  3,080 2.3% 2,601 1.9% 
Non-mandatory Travel Only 17,482 13.0% 17,152 12.8% 

Stay at Home/Out of Area/ 
External Travel Only 15,052 11.2% 14,592 10.9% 
Total 134,449 100% 134,449 100% 

 

School Escorting Model 
For each child traveling to school, the school escorting model determines whether he or she is 
escorted by another household member to or from school, and, if so, which household member 
does the escorting, and whether that household member escorts the student as part of a mandatory 
tour (for example, on the way to or from work). The Excel file that summarizes the results of the 
school escorting model is SchoolEscort.xlsm. 

The five alternatives for each student are: 

• Outbound mandatory – Escorting to school as part of a mandatory tour 

• Outbound standalone – Escorting to school as part of a standalone tour 

• Return mandatory – Escorting from school as part of a mandatory tour 

• Return standalone – Escorting from school as part of a standalone tour 

• None – Student is not escorted. 
 

The more detailed comparisons in the Excel files show the following results: 

• The survey data show that very little school escorting occurs in zero car 
households. The model results reflect this unsurprising result. 

• Both the survey data and model results show that most escorts are full-time 
workers or non-working adults. 

• The household survey data show that 72 percent of escorts are female; the 
model results show a lower percentage of female escorts (62 percent). 

• Generally, fewer children from higher income households are escorted, 
especially for the youngest children. 
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Table 4.14 Regional Comparison of School Escorting Alternatives 

Escort Type Child Age 
Expanded household 

survey data Model Results Percentage 
Point Difference  
(Model - Survey) Count Percentage Count Percentage 

Outbound Mandatory < 5 Years 53,716 20.9% 54,958 20.5% -0.4% 
Outbound Standalone < 5 Years 39,172 15.2% 38,501 14.4% -0.9% 
Return Mandatory < 5 Years 49,848 19.4% 51,756 19.3% -0.1% 
Return Standalone < 5 Years 39,941 15.5% 41,492 15.5% 0.0% 
None < 5 Years 74,263 28.9% 80,869 30.2% 1.3% 
Total < 5 Years 256,940  267,576   

Outbound Mandatory 5-15 Years 78,304 7.3% 115,881 10.5% 3.2% 
Outbound Standalone 5-15 Years 114,090 10.6% 84,261 7.6% -3.0% 
Return Mandatory 5-15 Years 48,057 4.5% 78,485 7.1% 2.6% 
Return Standalone 5-15 Years 99,897 9.3% 75,770 6.8% -2.4% 
None 5-15 Years 734,989 68.3% 751,817 68.0% -0.4% 
Total 5-15 Years 1,075,337  1,106,214   

Outbound Mandatory 16+ Years 8,528 4.3% 6,736 3.4% -0.9% 
Outbound Standalone 16+ Years 11,927 6.0% 21,528 10.9% 4.9% 
Return Mandatory 16+ Years 3,840 1.9% 5,327 2.7% 0.8% 
Return Standalone 16+ Years 6,166 3.1% 3,982 2.0% -1.1% 
None 16+ Years 167,920 84.6% 159,647 80.9% -3.7% 
Total 16+ Years 198,381  197,220   

Outbound Mandatory All  140,548 9.2% 177,575 11.3% 2.1% 
Outbound Standalone All 165,189 10.8% 144,290 9.2% -1.6% 
Return Mandatory All 101,746 6.6% 135,568 8.6% 2.0% 
Return Standalone All 146,004 9.5% 121,244 7.7% -1.8% 
None All 977,171 63.8% 992,333 63.2% -0.7% 
Total All 1,530,658  1,571,010   

 

Table 4.15 Regional Comparison of School Escorting Types –  
Household Survey vs. Model Results 

Escort Person Type 
Expanded Household 

Survey Data Model Results Percentage Point 
Difference  

(Model - Survey) 
Count Percentage Count Percentage 

Adult Student 22,542 5.0% 6,629 1.5% -3.6% 

Full-time Worker 274,394 61.4% 308,295 68.2% 6.8% 

Part-time Worker 53,548 12.0% 65,243 14.4% 2.5% 

Non-working Adult 90,952 20.3% 67,654 15.0% -5.4% 

Senior 5,603 1.3% 4,347 1.0% -0.3% 

Total 447,038  452,168   
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Joint Travel Model 
The fully joint tour models include a generation model, which simulates the number (zero, one, 
or two) and purpose (meal, shopping, personal business or social-recreation) of fully joint tours 
made by each household; and participation model, which determines which household members 
participate in each simulated joint tour. The Excel file that summarizes the results of the fully joint 
tour models is JointTour Gen & Part.xlsm. The household survey data set shows an average of 
0.255 fully joint tours per household while the model results show 0.262 joint tours per household. 

The more detailed comparisons in the Excel files show the following results: 

• The survey data set shows varying rates of joint tours per household by county, 
with the lowest rates in Baltimore City and Washington, D.C. This is not 
surprising since average household size is lower in these cities than in the rest 
of the model region. These two municipalities also have the lowest joint tour 
rates in the model results, though the model somewhat overestimates the joint 
tour rate in Baltimore City. 

• Among households making joint tours, there is no discernable pattern of the 
number of joint tours made by income level. The model somewhat 
overestimates the number of joint tours for the lowest income group. 

• Among households making joint tours, zero vehicle households make fewer 
joint tours, though the model somewhat overestimates the joint tour rate for 
these households. The model also underestimates the joint tour rate for 
households with three or more vehicles. 

• The distributions of joint tours by purpose and by party size (two, three or three-
plus) are similar for the survey data set and the model results.  The cross-
classifications of tour purpose by party size also match well, with the largest 
differences appearing for the combinations with the lowest incidence in the 
survey data set (generally, the three-plus person tours). 

Individual Non-Mandatory Tour Generation Model 
The individual non-mandatory tour generation model simulates the number (zero, one, two, or 
three) and purpose (meal, shopping, personal business, escorting or social-recreation) of non-
mandatory tours made by each person in the synthetic population for whom a mandatory or non-
mandatory daily activity pattern has been simulated. (At least one non-mandatory tour must be 
simulated for persons with non-mandatory patterns). The Excel file that summarizes the results of 
the non-mandatory tour generation model is INMTourGeneration.xlsm. The number of modeled, 
non-mandatory tours per person is slightly lower (about four percent) than the number of such 
tours in the expanded household survey data set. 

The more detailed comparisons in the Excel files show the following results: 

• The modeled percentages of non-mandatory tours by purpose match the 
percentages from the survey data set almost exactly. 

• Compared to the survey data set, the model slightly overestimates the number 
of non-mandatory tours for seniors and slightly underestimates for children, 
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adult students and adult non-workers. The model percentages of non-mandatory 
tours by purpose for each person type also match the percentages from the 
survey data set almost exactly. 

• Most of the underestimation of non-mandatory tours by the model is for males.  
The expanded show very similar percentages of tours by purpose for males and 
females. The slight differences between genders in the data (for example, 
slightly higher percentages of shopping and escort tours for females) are 
reflected in the model. 

• There are few relatively minor differences in the model results by income level, 
household size and vehicle availability, compared to the survey data set.  
Perhaps most notable is that the model does not pick up the differences by 
household size for individual meal tours—the survey data show that the larger 
the household, the lower the incidence of individual meal tours. 

Work-based Subtour Generation Model 
The work-based subtour generation model simulates the number (zero, one, or two) and purpose 
(work, meal, shopping, personal business, escorting or social-recreation) of work-based subtours 
made by persons making work tours. The Excel file that summarizes the results of the work-based 
subtour generation model is WBTourGeneration.xlsm. The number of modeled work-based 
subtours per work tour is about the same as the number of such subtours in the expanded household 
survey data set (0.154 observed versus 0.155 modeled). 

The more detailed comparisons in the Excel files show the following results: 

• The modeled percentages of work-based subtours by purpose closely match the 
percentages from the survey data set. 

• The model results show that those who take non-auto modes to work make 
fewer subtours than those who take auto modes, with those who walk or bike to 
work making fewer subtours than those who take transit. This seems logical, in 
that individuals taking non-auto modes typically lack access to cars for making 
work-based subtours. However, the survey data set generally shows the 
opposite pattern. The model results slightly overestimate the number of 
subtours by workers who use auto modes to work and slightly underestimate 
the number of subtours by workers who use non-auto modes to travel to work. 

• The survey data set shows that males make more work-based subtours than 
females, and the model results match this result. 

• The household survey data show that the rate of making work-based subtours 
increases with income level.  The model data show this pattern for all travelers, 
but at a much more moderate rate of increase. 

4.2.1.3 Tour Level Choice Models 
Tour Destination Choice Models 
The tour destination choice models simulate the location of the primary activity of each tour. There 
are Excel files with detailed results for various aggregate activity purposes: 
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• Work (not to regular workplace) – Tour Dest Work.xlsm 

• University - Tour Dest Uni.xlsm 

• Fully joint – Tour Dest Joint.xlsm 

• Individual non-mandatory (except escort tours) - Tour  Dest INM.xlsm 

• Work-based subtours – WB Tour Dest.xlsm 
 

Each spreadsheet file includes histograms comparing the tour length frequency distributions, by 
both time and distance, for the corresponding activity purpose.   

Table 4.16 Coincidence Ratios for Tour Length Frequency Distributions 

  Coincidence Ratio 

Tour Purpose Time Distance 

Work (including tours to regular workplace) 86% 80% 

University 91% 76% 

Joint 90% 85% 

Individual Non-mandatory 89% 89% 

Work-based Subtours 98% 77% 

 

For each tour purpose, the following comparisons between the observed (expanded household 
survey) data and model results are included in the Excel files: 

• Average tour length (time and distance) by: 

– Tour activity (meal, shop, personal business or social-recreation) - for non-
mandatory tours only 

– Income level 

– Area type at home (or workplace for work-based subtours) and at the 
primary activity location 

– Person type – except joint tours 

– Number of household vehicles – except work-based subtours 

– Parent tour mode –work-based subtours only 

• Percentage of intrazonal tours (primary activity location zone is the same as the 
home zone, or work zone for work-based subtours) by: 

– Area type 
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– Person type – work tours only 

– Number of household vehicles – except work-based subtours 

– Parent tour mode –work-based subtours only 
 

In the model results, the average tour lengths show a logical progression with tour lengths 
increasing as income increases; the survey data do not show this pattern for all tour purposes. 
Another difference is that the model shows more intrazonal tours for less dense areas while the 
survey data do not show this pattern. 

Table 4.17 Average Trip Length Comparisons by Tour Purpose 

  Observed Model 

Tour Purpose Time 
(min) 

Distance 
(miles) 

Time 
(min) 

Distance 
(miles) 

Work 23.0 12.0 23.1 11.3 

University 17.2 9.0 17.2 8.3 

Joint 12.8 7.1 14.4 7.2 

Individual Non-mandatory 11.0 5.7 11.9 5.6 

Work-based Subtours 5.7 3.3 6.0 2.5 

 

Table 4.18 Comparison of Intrazonal Percentages 

Tour Purpose Time Distance 

Work (including tours to regular workplace) 2% 3% 

University 3% 4% 

Joint 7% 8% 

Individual Non-mandatory 11% 13% 

Work-based Subtours 18% 18% 

 

Tour Time-of-Day Choice Models 
The tour time-of-day choice models simulate the start and end times, in half-hour increments, of 
the primary activity of each tour.  There are Excel files with detailed results for various aggregate 
activity purposes: 
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• Mandatory (work, school and university) - TOD_Mand.xlsm 

• Joint - TOD_Joint.xlsm 

• Individual non-mandatory - TOD_NM.xlsm 

• Work-based subtours - TOD_WB.xlsm 
 

Each spreadsheet presents histograms comparing the distributions of activity arrival and departures 
for the corresponding activity purpose.  

Table 4.19 Coincidence Ratios for Time-of-Day Distributions 

  Coincidence Ratio 

Tour Purpose Arrival Departure 

Work 85% 83% 

School 81% 86% 

University 61% 51% 

Joint 83% 78% 

Individual Non-mandatory 83% 83% 

Work-based Subtours 90% 91% 

 

Table 4.20  Modeled and Observed Activity Durations by Purpose 

 Duration (hours) 

Tour Purpose Survey Model 

Work 7.1 7.4 

School 7.0 7.2 

University 4.5 5.0 

Joint 1.9 1.7 

Meal 0.9 1.5 

Shopping 0.9 1.0 

Personal Business 1.8 1.4 
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Social-recreation 1.0 1.8 

Escort 0.1 0.2 

Work-based Subtours 0.8 0.7 

Each spreadsheet also compares the average activity duration in hours by the following 
segmentations: 

• Income level 

• Person type – except joint tours 

• Gender – except joint tours 

• Specific activity purpose (e.g., meal, shopping) – joint, non-mandatory, and 
work-based 
 

In most cases, the modeled and survey activity durations are within 10 percent or within 10 minutes 
of one another, when there are sufficient observations in the segment.  Some exceptions include 
the following: 

• Modeled activity durations for work tours are about 15 percent high for part 
time workers and about 25 percent high for adult students. Modeled activity 
durations for work tours are about 15 percent high for the $15,000 to $30,000 
income group and about 10 percent high for the $30,000 to $50,000 income 
group. 

• Modeled activity durations for non-mandatory tours are high for most 
segments, since the average activity duration is high by about 15 minutes. 

• Several of the university tour segments have greater differences between the 
observed data and model results; this is due to the relatively low number of 
these tours. 

Tour Mode Choice Models 
The tour mode choice models simulate the main mode of each tour. -There are Excel files with 
detailed validation results for various aggregate activity purposes: 

• Work - TourModeChoice_Work.xlsm 

• School - TourModeChoice_Sch.xlsm 

• University - TourModeChoice_Uni.xlsm 

• Joint - TourModeChoice_Joint.xlsm 

• Individual non-mandatory (except escort tours) - TourModeChoice_INM.xlsm 

• Escort - TourModeChoice_Escort.xlsm 

• Work-based subtours - TourModeChoice_WB.xlsm 
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Table 4.21 Regional Modeled and Observed Tour Mode Shares by Purpose 

  
Work 

 
School 

 
University 

Individual Non-
mandatory 

Tour Mode Survey Model Survey Model Survey Model Survey Model 

Drive Alone 59.0% 58.6% 2.0% 1.9% 50.9% 49.5% 46.9% 47.4% 
Shared Ride 2 14.4% 14.9% 19.5% 7.1% 11.6% 11.5% 24.3% 23.5% 
Shared Ride 3+ 7.7% 8.2% 38.0% 53.3% 11.4% 11.3% 12.2% 11.7% 

Transit-Walk 
Access 9.1% 8.6% 4.5% 4.4% 13.3% 14.3% 6.0% 5.8% 

Transit-Auto 
Access 6.6% 6.4% 0.3% 0.3% 3.9% 3.9% 0.9% 0.9% 
Walk 2.3% 2.5% 7.7% 6.3% 6.3% 7.6% 8.9% 10.1% 
Bike 0.8% 0.8% 0.4% 0.4% 1.7% 1.9% 0.6% 0.6% 
School Bus   27.7% 26.3%   0.2%  

  
Escort 

 
Joint 

Work-based 
Subtours 

 
ALL TRIPS 

Tour Mode Survey Model Survey Model Survey Model Survey Model 

Drive Alone     44.5% 46.1% 38.9% 38.4% 
Shared Ride 2 45.7% 46.9% 46.7% 47.2% 12.9% 12.7% 22.4% 20.9% 
Shared Ride 3+ 42.7% 40.5% 43.0% 43.5% 7.2% 7.0% 17.9% 20.1% 
Transit-Walk 
Access   2.9% 2.6% 2.0% 2.2% 6.1% 5.9% 
Transit-Auto 
Access   0.4% 0.0% 0.2% 0.0% 2.8% 2.7% 
Walk 11.7% 12.5% 6.7% 6.4% 32.8% 31.7% 7.8% 8.0% 
Bike   0.3% 0.3% 0.2%  0.6% 0.6% 
School Bus     0.2%  3.5% 3.5% 

 

For each tour purpose, the spreadsheet files show the following comparisons between the survey 
and modeled tour mode shares: 

• Area type at home (or workplace for work-based subtours) and at the primary 
activity location 

• Distance range 

• Transit in-vehicle time ranges (walk and auto access) 

• Household size and income level 

• Vehicles less than, equal to, or greater than number of workers/drivers 

• Age and gender 
 

In nearly all cases, the mode shares from the model closely matched those from the survey data. 
Some of the key results, which are true for both the observed and model data, include the 
following: 



 132 

• Not surprisingly, transit and non-motorized mode shares increase as the area 
becomes more densely developed, while auto mode shares decrease. This trend 
noted in the expanded survey data is also seen in the model, although the rate 
of changes among area types is more moderate. (It should be noted that except 
for work and individual non-mandatory tours, the number of survey 
observations is fairly small for the most urban area types.) 

• Transit-walk access mode shares decrease with increased distance; the opposite 
holds for transit-auto access shares (nearly all transit-auto access tours are for 
work or university purposes). The model captures these trends better for the 
walk access tours.  Non-motorized trips, naturally, are nearly all short distance, 
and the model results reflect this. 

• Transit mode shares to all counties are low—from zero to two percent—for all 
tour purposes, with the exception of the three Maryland counties in the 
MWCOG region, where the transit shares are a bit higher. Transit shares to the 
cities of Baltimore and Washington are substantially higher. The model results 
reflect these trends. 

• Transit-walk access shares decrease with increasing income levels for all tour 
purposes, and the model results accurately reflect this trend. For work tours, 
transit-auto access shares increase with increasing income levels, and the model 
results accurately reflect this as well. 

• Generally, transit shares decrease with increasing household size, and the model 
accurately reflects this trend. 

• Not surprisingly, transit and non-motorized mode shares are much higher in 
households with fewer vehicles than workers, or fewer vehicles than drivers, 
and are even higher in households with zero vehicles. The model reflects these 
trends accurately. 

• Auto shares, especially drive alone, decrease while transit shares decrease with 
increasing age. 

• For work tours, transit and shared ride mode shares are higher for females; 
drive-alone and bike mode shares are higher for males. 

4.2.1.4 Stop Generation Models 
The stop generation models simulate the number and purpose of stops made on each tour.  Separate 
models were estimated for each tour purpose. There are Excel files with detailed results for various 
aggregate activity purposes: 

• Mandatory (work, school and university) - Stops_Mand.xlsm 

• Joint - Stops_Joint.xlsm 

• Individual non-mandatory - Stops_INM.xlsm 

• Work-based subtours - Stops_WB.xlsm 
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As these tables show, the model results are close to the observed results from the expanded 
household survey data set. 

Table 4.22 Regional Modeled and Observed Shares of Half Tours by Number of Stops by 
Purpose 

  
Work 

 
School/ University 

Individual Non-
mandatory 

Stops Survey Model Survey Model Survey Model 

0 stops 50% 48% 78% 80% 55% 60% 
1 stop 35% 37% 15% 13% 30% 27% 
2 stops 10% 9% 5% 5% 9% 8% 
3 stops 6% 7% 2% 2% 6% 5% 
 Joint Work-based Subtours All Half Tours 

Stops Survey Model Survey Model Survey Model 

0 stops 51% 58% 80% 86% 57% 60% 
1 stop 34% 30% 17% 13% 29% 28% 
2 stops 10% 9% 3% 2% 9% 8% 
3 stops 4% 3% 0% 0% 5% 5% 

**Note: Model is constrained to produce only 1 or 2 stops per half tour on work based subtours. 

Table 4.23 Observed and Modeled Average Number of Stops per Half Tour 

 Outbound Half Tour Return Half Tour 

Tour Purpose Survey Model Survey Model 

Work 0.24 0.28 0.47 0.46 
School/University 0.08 0.08 0.24 0.22 
Individual Non-mandatory 0.30 0.26 0.37 0.32 
Joint 0.32 0.24 0.36 0.34 
Work-based Subtours 0.10 0.07 0.17 0.13 
Total – All Tours 0.21 0.25 0.33 0.34 

 

For each tour purpose, the spreadsheet files show the following comparisons between survey and 
modeled stops: 

• Income level 

• Person type – except joint tours 

• Age and gender – except joint tours 
The more detailed comparisons in the Excel files show some differences between the model results 
and the expanded survey data (some due to small sample sizes for certain segments), but overall 
the model results reflect the observed data fairly accurately. 
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4.2.1.5 Stop/Trip Level Choice Models 

Stop Destination Choice Models 
The stop destination choice model simulates the locations of all intermediate stops between the 
home (or workplace, for work-based subtours) and primary activity location on tours.  The Excel 
file that summarizes the results of this model is StopDestChoice.xlsm. 

While there are some differences in the distributions, the fits are good; the coincidence ratio is 85 
percent.  The average trip distances are 4.1 miles (observed) and 4.4 miles (modeled). 

 
 

Figure 4.6 Trip length frequency distribution for stops (miles) 

 
The spreadsheet file also provides comparisons between the observed data from the household 
survey and the model results for the average trip distances segmented by stop purpose, household 
income level, tour mode, area type at home and primary destination, and tour purpose. These 
comparisons show a good match, with 36 of the 54 segments having modeled trip lengths within 
one half mile of the observed trip length and 47 of the segments having modeled trip lengths within 
one mile of observed. The largest overestimates by the model are for two of the midrange area 
types and for school stops, while the largest underestimates are for rural area type and for work 
and university stops. 

Stop Time of Day Choice Models 
The stop time of day choice model simulates the times (at the half-hour level) of all intermediate 
stops between the home (or workplace, for work-based subtours) and primary activity location on 
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tours. The Excel file that summarizes the results of this model (as well as the trip mode choice 
model, described in the next section) is TripModeTODChoice.xlsm. 

 

Figure 4.7 Trip length frequency distribution for stops (miles) 

 

Trip Mode Choice Model 
The trip mode choice model simulates the mode for each trip that is part of a tour, conditional on 
the simulated tour mode. The Excel file TripModeTODChoice.xlsm also summarizes the results of 
the trip mode choice model. The following is a summary of trip mode shares by tour mode: 

Drive alone: 

• Survey:  drive alone – 99%, walk 1% 

• Model:  drive alone – 98%, walk 2% 
Tour mode shared ride 2: 

• Survey:  drive alone – 30%, shared ride 2 – 68%, walk 2% 

• Model:  drive alone – 31%, shared ride 2 – 67%, walk 2% 
Tour mode shared ride 3+: 

• Survey:  drive alone – 18%, shared ride 2 – 18%, shared ride 3+ – 62%,  
walk – 2% 

• Model:  drive alone – 15%, shared ride 2 – 21%, shared ride 3+ – 63%,  
walk – 1% 

Tour mode transit-walk access: 
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• Survey:  drive alone – 1%, shared ride 2 – 5%, shared ride 3+ – 3%,  
transit-walk access – 68%, walk – 23%, bike – 1% 

• Model:  drive alone – 6%, shared ride 2 – 8%, shared ride 3+ – 4%,  
transit-walk access – 51%, walk – 29%, bike – 3% 

Tour mode transit-auto access: 

• Survey:  drive alone – 9%, shared ride 2 – 9%, shared ride 3+ – 5%,  
transit-walk access – 5%, transit-auto access – 65%, walk – 7% 

• Model:  drive alone – 6%, shared ride 2 – 29%, shared ride 3+ – 18%,  
transit-walk access – 2%, transit-auto access – 39%, walk – 6% 

Tour mode school bus: 

• Survey:  dhared ride 2 – 4%, shared ride 3+ – 6%, walk – 2%, school bus – 
88% 

• Model:  dhared ride 2 – 5%, shared ride 3+ – 8%, walk – 3%, school bus – 
84% 
 

Note that all trips on walk and bicycle tours have the same trip mode as the tour mode. 

The spreadsheet file also shows the following comparisons between survey and modeled trip mode 
shares: 

• Area type at home (or workplace for work-based subtours) and at the primary 
activity location 

• Distance range 

• Transit in-vehicle time ranges (walk access) 

• Household size and income level 

• Vehicles less than, equal to, or greater than number of workers/drivers 

• Age and gender 
 

In most cases, the mode shares from the model accurately matched those from the survey data. 

4.2.2 Highway and Transit Assignment 

 Since the highway and transit assignment processes are essentially the same static, aggregate 
process used in BMC’s previous (trip-based) model, the checks are like those performed for the 
validation of the previous model. They consist mainly of comparisons of model results to observed 
data, including traffic and transit ridership counts. Highway assignment checks include: 

• Volume/vehicle-miles traveled (VMT) by facility type 

• Volume/VMT by area type 
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• Volume/VMT by county 

• Volume/VMT by volume level 

• Volume/VMT by time of day 

• Volume/count ratio on key routes 

• Sum of volumes on screenlines/cutlines 
 

Transit assignment checks include: 

• Boardings by service category (Metrobus local, Metrobus park-and-ride, 
Metrorail) 

• Boardings by service category and geographic orientation, defined as follows: 

– Local-radial 

– Local-crosstown 

– Local-circulator 

– Local-limited 

– Local-shuttle 

– Park-and-Ride-CBD 

– Park-and-Ride-secondary 

– Metrorail 

• Boardings per linked trip (transfer rate) 

• Boardings by route 

• Boardings by Metrorail station 
 
4.2.3 Sensitivity Testing 
 
One goal of activity-based models is an increased sensitivity to model inputs.  Sensitivity testing 
involves adjusting key factors in the model and observing the effects on forecasted travel.  These 
adjustments can be made to model parameter values (e.g., the mode choice cost coefficient) and 
to model inputs (e.g., land use variables, socioeconomic conditions, fuel costs, etc.). 

The following sensitivity tests were performed: 

• Aging population showing more retirees 

• Brownfield development 

• Time of day switching due to congestion 
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4.3  DTALite with InSITE ABM 
 
DTALite, an open-source light-weight, mesoscopic DTA simulation package, in conjunction with 
the Network eXplorer for Traffic Analysis (NeXTA) graphic user interface (GUI), has been 
developed to provide transportation planners, engineers and researchers with a theoretically 
rigorous and computationally efficient traffic network modeling tool. This fully functional, open-
source dynamic traffic assignment model can be downloaded from 
https://code.google.com/p/nexta/. In general, the software suite of DTALite + NeXTA seeks to: 

(1) Provide an open-source code base to enable transportation researchers and software 
developers to expand its range of capabilities to various traffic management 
applications. 

(2) Present results to other users by visualizing time-varying traffic flow dynamics and 
traveler route choice behavior in an integrated 2D/3D environment. 

(3) Provide a free, educational tool for students to understand the complex decision-
making process in transportation planning and optimization processes. 

Additionally, DTALite adopts a new software architecture and algorithm design to facilitate the 
most efficient use of emergent parallel (multi-core) processing techniques, and exploit the 
unprecedented parallel computing power newly available on both laptops and desktops. 

The overall structure of DTALite, illustrated in Figure 4.8, integrates the four major modeling 
components, highlighted in yellow. 
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Figure 4.8 DTALite software system architecture with key modeling components 

 

DTALite’s four major modeling components include: 

(1) Time-dependent shortest path finding, based on a node-link network structure. 

(2) Vehicle/agent attribute generation, which combines an origin-destination demand 
matrix with additional time-of-day departure time profile to generate trips. 

(3) Dynamic path assignment module, which considers major factors affecting agents’ 
route choice or departure time choice behavior, such as (i) different types of traveler 
information supply strategies (e.g., historical, pre-trip and/or en-route information, 
and variable message signs), and (ii) road pricing strategies where economic values 
are converted to generalized travel time. 

(4) A class of queue-based traffic flow models that can accept essential road capacity 
reduction or enhancement measures, such as work zones, incidents and ramp meters. 
The queue-based traffic simulation model in DTALite only requires basic link 
capacity and free-flow speed for operation, which are readily available from static 
traffic assignment models. By using simple input parameters, in addition to possible 
connections with common signal data interfaces, the proposed simulation package 
may enable state DOTs and regional MPOs to rapidly apply advanced DTA 
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methodologies for large-scale regional networks, subareas or corridors. Additionally, 
the modularized system design may help serve future needs by simplifying the 
process for transportation researchers and software developers to continue to build 
upon and expand its range of capabilities. 

The traffic assignment and simulation modules are fully integrated and iterated to either capture 
day-to-day user response or find steady-state equilibrium conditions. Within this simulation-
assignment framework, the rich set of output data include traffic measures of effectiveness (MOEs) 
at different spatial and temporal scales, ranging from network, corridor-level and specific links.  
Typical speed, volume and density measures, and agent-based trajectories can be visualized 
through the NEXTA user interface. 

To allow consistent origin-destination demand estimation (ODME) for fast model calibration, 
DTALite embeds a path, flow-based optimization model that utilizes sensor data (i.e., observed 
link flows and densities) and target OD demands to estimate a set of path flow volumes. This 
approach combines origin-destination estimation/ adjustment with traffic assignment seamlessly. 
Under this ODME model, DTALite first runs K assignment iterations (e.g., 40 iterations) to 
generate likely paths. It then performs another K' iterations (e.g., 100 iterations) with ODME 
enabled, to provide the final solution as a set of path-flow patterns satisfying “tolled user 
equilibrium.” 

Based on the design structure and queue-based mesoscopic traffic simulation model, DTALite has 
considerable potential for generalizing the modeling framework into the field of real-time traffic 
state estimation and prediction. In future research, different ways will be examined for calibrating 
the maximum queue discharge rates, utilizing end-to-end travel times, and considering an agent-
based learning framework to fully consider behavioral heterogeneity. 
 

4.4  Integrated InSITE-DTALite – Sequential 
Integration 
 
The primary objective of the model integration is to produce a working model of the Baltimore 
region that is disaggregate for auto travel on both the demand and supply sides. This model is 
intended to be “application ready,” meaning that it has been validated and includes all functionality 
required for typical planning analyses. Therefore, the integration pursued between InSITE and 
DTALite falls in the sequential integration paradigm.  
 
In this paradigm, the travel demand model (InSITE) and the DTA model (DTALite) are run in 
iterations, with a single “big loop” consisting of an iteration of the travel demand model followed 
by a run of the DTA model. The travel demand information (e.g., agents with their activities and 
travel decisions, as well as characteristics) is passed to the DTA model within each big loop, and 
travel time information resulting from the dynamic assignment is passed back to the travel demand 
model for use as input (e.g., update activity pattern choices) in the next big loop. Note that DTA 
models themselves are run iteratively, and so there are several “small loops” of the DTA run within 
each “big loop.” A number of “big loops” are run until a measure of convergence is achieved, 
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where the change in travel times (or some other measure) from one big loop to the next is within 
a specific tolerance. The data exchange between InSITE and DTALite is such that an agent is 
preserved during the exchange of data from InSITE to DTALite and vice versa. Thus, the 
integrated InSITE-DTALite model is fully disaggregated. There is also the tight integration 
paradigm, where both the travel demand model and DTA model share information continuously 
(i.e., the analyst specifies the temporal resolution for the exchanges) within each big loop. This 
paradigm is not considered for the integrated model InSITE-DTALite. 

 

 

Figure 4.9 Sequential integration process 

 

4.4.1 Information to be Exchanged Between Models 
From InSITE to DTALite 
Many traffic analysis tools (e.g., VISSIM, TransModeler, Aimsun, Paramics) have proprietary 
components that could create impediments for exchanging data across independent software 
packages, which require the development and application of individual utility functions. While the 
actual solution will be derived during the project execution, our proposed solution to this challenge 
is to develop an open data format that allows data conversion and communication utilities from 
each tool formats to the proposed Agent+ data bus. Although the framework can be implemented 
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without an Agent+ data bus or an open data communication format standard on a data hub, only 
ad-hoc linkages across specific software packages can be established. This could fail to allow 
comprehensive and streamlined analysis of the complex transportation system environment to 
support a wide range of activity-based model/DTA scenario evaluations. 

The research team has already implemented an open-source Agent+ data hub that allows a day-
by-day and minute-by-minute integration of ABM and DTA models. New development efforts are 
needed to implement the data bus for an on-line data communication environment, but can be 
implemented with minimal risks given the team’s experience in developing the data hub.   
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Figure 4.10 Data flow chart of Agent+ data bus interface for integrating DTA and 
activity-based models. 

 

Table 4.24. Example Data Flow of Individual DTA or Activity-based Model Module 
within Agent+ Data Bus 

Package  Software Packages 
Connected to Data 
Bus 

Receive Input from 
Data Bus 

Provide Output to 
Data Bus 

Activity-based 
Model 

CSV file reading and 
writing utility 

Day-to-day or min-
by-min traffic 
conditions at 
link/path/OD levels 
 

Min-by-min traffic 
request for possible 
departure time, 
destination, and mode 
change 
  

DTA CSV file reading and 
writing utility or data 
receiving and 
aggregation package 

Traffic network, 
vehicle origin and 
destination, existing 
traveled path, real-

Information for 
upstream vehicles to 
change routes, updated 
travel time and queue 
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time traffic data 
stream 

warnings, traffic 
conditions at 
link/path/OD levels 

 

Relationship between data hub and data bus modules 

• The data hub hosts essential network, demand and signal control data for multi-
resolution modeling. The real-world traffic measurements from private data vendors and 
public agencies can also be archived in the databases. 

• The data bus aims to enable tight interconnections between three critical entities: data, 
models, and simulators of decision makers. The data bus provides excellent data 
interchange interoperability, which holds a key means of accelerating the integration of 
DTA and activity-based model distributed simulation. In the long run, it allows 
simulation models to be executed through multiple computation instances in a virtual 
cloud computing center or in a parallel computing environment. 

Need for synchronizing simulation clock Multiple modules (e.g., demand simulator, network 
simulator) within the multi-resolution analysis framework execute in different processors and 
communicate with each other asynchronously.  Different simulation modules can run with 
different execution cycles. Each step size is determined by the corresponding simulation needs 
(e.g., six seconds for mesoscopic traffic simulator vs. one minute for travel demand simulator), 
computational resource constraints, as well as input/output dependency between different models. 
The proposed data bus concept further highlights the needs for standardized data format across 
multi-resolution simulation, a tight coupling with activity-based model and DTA simulation, and 
clearly defined rules for performing multi-horizon simulation/prediction for applications such as 
dynamic flow control, dynamic pricing and dynamic information provision. In the MITAMS test 
bed with multiple simulators, it is important to ensure all the computer applications are 
synchronized with a common simulation clock, while certain high-fidelity simulation systems may 
be even slower than real-time (e.g., one simulated second is equal to ten real-world seconds).  

Synchronizing simulation clock by using scheduled files as software file token 

In general, a security token (or sometimes a hardware token, authentication token, USB token, 
cryptographic token, software token, virtual token or key fob) may be a physical device that an 
authorized user of computer services is given to ease authentication. In this work, files are used as 
software tokens. -This is illustrated in Figure 4.11. -Each DTA/activity-based model process must 
have the file token to move forward, perform simulation and generate the next token required by 
the sequential process. The file tokens have fixed names to be better synchronized across 
processes. 



 144 

 

Figure 4.11 Illustration of tokens in a distributed computing environment. 

Data flow chart for each process in the integrated framework 

The read input schedule file to follow the token reading, output frequency and file name 
specification: 

While (for each x second scheduled) 
{ 

If ( input file token is ready) 
{ 
Perform simulation/analysis  
Generate output file token  (for next process) 
} 

} 
 
Specifically, in the proposed Agent+ modeling framework, the data are first specified updating 
frequency and file name convention in a file called “Input_simulation_shedule.csv” for output 
Link/Path/OD MOE files and for input attributes and agent routing attributes. In this example, the 
input and output data streams are defined with respect to the DTA module.  
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Figure 4.12 Sample content of Input_simulation_shedule.csv file. 

 

By detecting if the required input files are available for every time interval (say, one minute), the 
Agent+ modeling framework can use the scheduled input and output files accordingly as tokens 
for synchronizing the simulation clock with the data bus’s master clock. See Figure 4.13 for an 
example. 

 

Data File Descriptions 

Figure 4.13 Implemented example of Agent+ framework with connections to data 
hub. 
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Figure 4.14 Sample files from DTALite. 

 

Data Block 1: MOE output files from DTA 

• RT_output_linkMOE_secXX.csv 

Attributes: from_node, to_node, travel time, speed and timestamp at 60-second 
resolution. 

• RT_output_ODMOE_secXX.csv 

Attributes: zone number, travel time, travel distance and  number of agents every 10 or 
15 minutes. 

• RT_output_pathMOE_secXX.csv 

Major attribute is the node sequence for each path at 60-second resolution. 

Data Block 2: Current agent list output from DTA, at current time or after a whole day 

• RT_Output_Current_Agent_secXX.csv 

Main 15 attributes for agents currently in the traffic simulator: agent_id, detour node 
sequence, pricing type and value of time, as shown in Figure 4.15. 

• RT_Output_ End-of-Day_Agent_dayXX.csv 

Attributes: Experienced travel times and path for each agent from the previous day. 
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Figure 4.15 Sample attribute list about current agents in DTA simulator 

 
From DTALite to InSITE 
The main data to be passed from DTALite will be related to highway travel times. The way static 
highway assignments will be executed in the original version of InSITE is discussed below to 
provide an understanding of how travel time inputs are fed back from highway assignments in an 
iterative process. 

InSITE uses 48 aggregate time periods of 30 minutes in length. In its original formulation, the 
static highway assignment in InSITE is expected to be performed for eight time periods that range 
in length from 1 hour during peak periods, to 11 or 12 hours for the overnight period. All of the 
periods are groups of 30 minute periods, and so the trip tables used in assignments are aggregated 
from the half-hour periods. 

For the first iteration of the demand model components in InSITE, travel time inputs are 
“skimmed” from the highway network (and the transit network) for four broadly defined periods:  
a.m. peak, mid-day, p.m. peak, and off-peak. After the highway assignment is run in the first 
iteration, travel times are available for each assignment period, and the loaded network resulting 
from the highway assignment for each of the eight periods will be skimmed. The travel time inputs 
used for each of the half-hour periods for the demand model will come from the skims for the 
assignment period where the half-hour period falls. 

The skimming process builds paths between all pairs of zones, using the volume on each network 
link to estimate an average travel time for the link for the time period. This is done using a simple 
formula relating the link travel time to its free flow time, capacity and volume, as loaded during 
the highway assignment for the period. Since any highway link could be part of a path, travel time 
estimates are computed for every link. 

In the integrated model, the DTA will replace the static highway assignment process. The DTA 
simulates highway travel dynamically over the entire day from beginning to end (because InSITE 
defines the beginning and end of the day at 3:00 a.m., this time will signify the start and end of the 
day for the DTA as well). There are no time periods used for assignments that are longer than the 
half-hour periods used in InSITE; therefore, DTALite will not produce travel times for longer 
periods. After the initial iteration, the travel time inputs to InSITE can be unique for each half-
hour period. 

Unlike the static process, the DTA does not produce a loaded network with volumes representing 
the entire period. With a DTA model, the network travel times are constantly changing as the 
simulated vehicles move through the network. Since the demand model uses aggregate time 



 148 

periods, however, travel times between zones are needed as inputs for the demand model 
components. 

It will therefore be necessary to create link travel times for each half-hour period by averaging the 
times experienced by the vehicles in the DTA during the period. To do this, it may be possible to 
adapt the process developed in the SHRP C10B project (see Cambridge Systematics, Inc., et al, 
2014, Section 2.3.1). The feedback process employed in the C10B model combines information 
from the DTA for all relevant trajectories within a time period (half-hour or broad period) to 
estimate an average time that can be used for input to the activity-based model. 

4.5  Convergence Paradigm in Sequential 
Integration  
 
The convergence paradigm adopted for the sequential integration is based on the concept of 
activity-schedule gaps and is explained as follows. Imagine you have an activity-schedule 
sequence for an agent as the one shown in the figure: 

 

• Primary represents the primary activity of the travel activity, for example, work.  

• Stops represents secondary activities, such as shopping and eating out.  

• Trv represents traveling by a given mode (car, transit, etc.). 

• The ts represent departure times and arrival times to the activities. 

For an agent, InSITE ABM will use the static assignment skims (in the big loop iteration 1) or the 
travel time skims from the previous iteration, generated after applying the method of successive 
averages (MSA) to the DTALite travel time skims in order to simulate the travel decisions of the 
agent. These simulation results are then put together in an agent list of trips and provided to 
DTALite to perform DTA. The DTA results will generate new travel time skims for the current 
iteration and MSA will be used to average them.  

Convergence will be based on measuring scheduling gaps, which are defined as the changes in 
travel times between the previous skims and the current travel time skim for the same Trv element. 
Furthermore, agents traveling where the current travel time skims reduce their activity durations 
to durations less than the minimum activity durations allowed will be identified. The minimum 
activity durations are obtained from the Household Travel Survey. These agents are flagged as 
infeasible and are re-simulated by InSITE ABM in the next big loop iteration. Agents not flagged 
as infeasible are not re-simulated by InSITE ABM in the next big loop iteration. The activity 
schedules of both agents re-simulated and agents not re-simulated are provided to DTALite in the 
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next big loop iteration to perform DTA. It should be noted that an agent not re-simulated in one 
big loop iteration could be re-simulated in another big-loop iteration. In general, the number of 
infeasible agents will decrease with probability one as more big loop iterations are completed, if 
the travel times converge with probability one to a constant value compatible with the minimum 
activity durations. 
 
DTALite simulations across big loop iterations will become consistent as the number of infeasible 
agents decreases to a value less than 50,000 agents. In other words, link volumes and OD volumes 
generated by DTALite across big iterations will become approximately the same for all links. This 
is a result of DTALite being deterministic and only InSITE ABM being stochastic. The 
stochasticity in the travel decisions will not significantly affect DTALite, as only the travel 
decisions of the shrinking infeasible agents change across big loop iterations, and the travel 
decisions of the feasible agents become constant across iterations. However, the number of 
infeasible agents is stochastic; it is likely that it will not reach zero and will likely fluctuate 
(increase and/or decrease across iterations eventually). DTALite results will still be approximately 
consistent across big loop iterations if the number of infeasible agents is significantly small, 
compared to the total number of agents. The relationship between number of infeasible agents and 
number of big loop iterations is shown in figure. 
 

 
 

Figure 4.16 Relative gap DTALite vs big loop iterations 
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Figure 4.17 Number of infeasible agents vs big loop iterations 
 
 

 

Figure 4.18 Relative gap vs big loop iterations. 
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Figure 4.19 PRMSE Volumes vs Big loop iteration 

As the number of infeasible agents decreases, the volumes start to become stable. However, 
some fluctuation is observed as the number of infeasible agents starts to fluctuate instead of 
further decreasing.  

4.6  Integrated InSITE-DTALite - Validation 
 

Validation is a critical element in ensuring that the new model is robust and that agencies can use 
the finished product.  Establishing a validation plan early in the model development process helps 
ensure that appropriate validation data are assembled or collected, and that adequate time and 
resources are devoted to the validation process. 

Two separate types of tests, validation tests and sensitivity tests, are described in this section.  For 
clarification, the following definitions will be employed in this project: 

• Calibration (not covered in this section) is the adjustment of model parameters to 
instruct models to replicate observed data for a base (calibration) year, or otherwise 
produce more reasonable results. 

• Validation is the application of the calibrated models and comparison of the results 
against data not used for estimation or calibration. Validation data may include 
additional data collected for the same year as the estimation or calibration of the model, 
or data collected for an alternative year. 
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• Sensitivity testing is the application of the models and model set using alternative input 
data or assumptions. While sensitivity testing may be performed for individual model 
components through the estimation of the elasticities and cross-elasticities of model 
coefficients, the focus of sensitivity testing for this project will be the application of 
the entire model set, using an alternative forecast or backcast year, and alternative 
transportation system or policy perturbations.  The focus of the sensitivity testing will 
be the plausibility and reasonability of the model results. 

4.6.1 Summary of Validation Data 
• Directional hourly count data of 15 vehicle classes by day of week is available at 1122 

locations within the BMC network.  
 

• Directional hourly speed data by day of week is available at 52 locations within BMC 
network.   

• The Maryland Mobility Report, provided to by the BMC. We have coded the bottleneck 
locations in the network based on this report.  We will combine this information with 
information from Google Maps to identify bottlenecks. 

4.6.2 Calibration and Validation Process of Integrated InSITE-DTALite 
For the model calibration, a sequential calibration approach was adopted. This is primarily because 
the run-times of the integrated model are between 1.5 to 1.8 days per big loop iteration (the main 
load residing in the InSITE ABM as it is responsible for about 60 percent of the run-time). This 
run-time is prohibitive for a simultaneous calibration of both the InSITE ABM and DTALite. 
Therefore, InSITE ABM was calibrated separately with the Household Travel Survey data; 
DTALite, using the demand from InSITE ABM, was calibrated separately using the base year data. 

For the validation, two aspects of traffic assignment should be considered: the accuracy of the 
process (i.e., model fit) and the inherent variability in the assignment process. It should also be 
noted that the InSITE ABM, as discussed previously, was extensively validated against the 
Household Travel Survey data. 

The DTALite trip assignment process introduces a time dimension to the assignment process.  
Specifically, DTALite explicitly accounts for the fact that time is required for a vehicle to traverse 
the transportation network, from his or her origin to destination. This is different from the static 
equilibrium assignment process used with the initial InSITE development that, in effect, models 
vehicles as simultaneously being on all links connecting the origin and destination. 

The time dimension in DTALite makes it possible to identify bottlenecks, queue locations and 
lengths, and congestion delay in ways not possible with static equilibrium or normal transit 
assignment processes. While the modeling of bottlenecks and queue lengths adds more realism to 
the trip assignment process, it also introduces more complexity in the model validation process.  
Specifically, bottlenecks and queues do not form in the same way every day. There is randomness 
to daily traffic and transit volumes, resulting travel times, and other impacts such as congestion 
delay. Identifying these issues in observed data may be a difficult task.   
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Observed traffic data will form the basis of integrated model validation  comparisons. A structured, 
two-level approach will be used: 

• The Level 1 validation is comparable to traffic assignment validations typically performed 
for regional travel models.  Generally, the Level 1 tests include aggregate (groups of links) 
comparisons of model volumes to observed data for the model base year. 

• The Level 2 validation is comparing the traffic assignment results from InSITE ABM static 
assignment, with the DTA assignment results for volumes and VMT. 

4.6.2.1 Trip Assignment Validation 
The primary focus of the Trip Assignment Validation will be the ability of the Integrated Model 
assignment to reproduce observed daily traffic volumes and vehicle-miles traveled (VMT). This 
validation can be considered a model system validation, since it will be impacted by the travel 
models embodied in both InSITE and DTALite. 
 

Table 4.25  Volumes by Functional Class and Area Type 

Stratification Percent Difference 
Functional Class  

Freeways/Expressways ±7% 
Principal Arterials ±10% 
Minor Arterials ±15% 
Collectors ±20% 
All Links  

 

Table 4.26 Level 1 Validation Tests (Aggregated to Daily) 
 

 

Validation Focus Validation Measures Expected Outcomes 
Individual link 
volumes 

. 
• Root mean squared error (RMSE) and percent RMSE 

by: 
– Functional class 

• Anomalous links: 
– Links with 0 volumes 

• Visual inspection for large errors in modeled link volumes 
or for general trends in errors. 

• %RMSE by volume group from guidelines for several static 
equilibrium traffic assignment model validation guideline 
documents (for daily traffic volumes).  Results from 
DTALite should, at a minimum, satisfy similar guidelines. 
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Figure 4.20 Observed daily volumes vs. model daily volumes. 
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Table 4.27 PRSME of Volume by Functional Classes 

Function Class InSITE ABM w/ Static 
Assign. (PRMSE) 

Integrated Model 
(PRMSE) 

Interstate -2.18% -3.69% 
Freeway -6.28% -3.24% 
Primary Arterial 1.65% 5.78% 
Minor Arterial -10.96% 4.06% 
Collector & Others -11.91% -2.65% 
Total -3.53% 0.84% 

 

The results presented in the figures and table highlight the performance of the integrated model 
relative to the InSITE ABM with static assignment. The results of the integrated model are more 
accurate to the observed daily count data, even when looking at specific functional classes, with 
some exceptions. However, additional validation is required to further assess performance of the 
integrated model. 

4.7  Integrated InSITE-DTALite - Application 
 

For the application, Baltimore Metropolitan Council (BMC) wanted to test a land use change 
scenario in the Brownfield area at Port Covington. This scenario is also for the base year 2012. 

For the scenario, the changes are briefly summarized as follows: 
• A new population was synthesized to account for the increased number of workers in the 

Brownfield area. 
 

Table 4.28 Average Percentage Change of Travel Time by Functional Classes 

 
 
 
 
 
 
 
 
 
 
 

• Land use changes were conducted to spur new jobs and related new opportunities stemming 
from the redevelopment of the Brownfield area. 

Preliminary results compared to the base scenario are presented as follows: 

Functional Class Base vs. Brownfield 
Interstate 0.09% 
Freeway -0.31% 
Primary Arterial 1.05% 
Minor Arterial 3.33% 
Collector & Others 0.97% 
Total 1.46% 
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The results indicate that most of the increase is in the arterials (both primary and secondary) in 
terms of travel time, particularly those arterials closest to the Port Covington redevelopment. The 
interstates will also see an increase, especially those close to Port Covington. Further analyses are 
required to understand the system’s response to the redevelopment. 
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5. Moving towards Tighter Integration of 
Dynamic Activity-Travel Demand and 
Network Assignment Models 

 
In this project, the integration between InSITE and DTALite falls in the sequential integration 
paradigm. This chapter depicts how tighter integration can be accomplished. The tighter 
integration paradigm described in this chapter uses a continuous time activity-based model 
(openAMOS) and DTALite within the SimTRAVEL framework.  Enhancements to InSITE would 
have to be made to facilitate the type of tight integration presented in the chapter.  Making such 
enhancements to InSITE and developing a tight InSITE-DTALite integrated modeling platform 
constitutes a major future research direction.  
 

5.1 Introduction 
 
The contemporary technological landscape has made information available on a number of 
platforms, creating opportunities to influence, manage, and enhance transportation network 
performance with respect to a number of possible criteria (e.g., delay, congestion, mode share, 
energy and emissions footprint) and under a wide variety of scenarios (e.g., regular traffic, work 
zones, evacuation situation, special events).  In cities around the world, transportation and mobility 
professionals are exploring ways to leverage the power of technology, connectivity and 
communication capabilities.  Tools are being developed to manage congestion, influence travel 
choices, and optimize transportation system performance, using analytics derived from big data 
streams obtained from a variety of sensors, embedded throughout the network. With the rapid 
development of connected and automated vehicles, and the availability of transportation-related 
apps that provide mobility options and traffic conditions in real time, the role of technology in 
shaping and managing the transportation system will only increase in the years ahead. 
 
The U.S. Department of Transportation (USDOT) has several intelligent transportation system 
initiatives underway intended to provide jurisdictions around the country a suite of tools, strategies 
and methods for enhancing system performance. The Applications for the Environment: Real-
Time Information Synthesis (AERIS) Program, for example, included a suite of strategies to 
reduce the energy and emissions footprint of travel in regions through the use of connected vehicle 
technologies, including vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 
communications (USDOT, 2016a). More recently, there has been a growing level of emphasis on 
the deployment of dynamic mobility applications (DMA) and active transportation and demand 
management (ATDM) strategies. DMA include a number of technologies aimed at enhancing 
network operations for a variety of system users, including auto users, transit riders, and freight 
transport providers (USDOT, 2016b).  ATDM strategies include a suite of approaches to 
proactively manage travel demand (e.g., dynamic pricing schemes and the provision of information 
to system users), traffic flow (e.g., dynamic speed limits and adaptive ramp metering), and parking 
operations (e.g., dynamic parking pricing and dynamic way-finding) (FHWA, 2012).    
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With rapid advances in technology and communication systems, the line that has traditionally 
separated transportation planning from traffic operations is blurred. An examination of the 
strategies and techniques in the DMA and ATDM toolboxes clearly illustrate that transportation 
professionals are moving towards erasing the line that divides, and more closely integrate planning 
and operations.  Several DMA and ATDM strategies are aimed at influencing and managing travel 
demand (e.g., pricing and traveler information) while others aim to improve network operations 
(e.g., intelligent traffic signal control systems and adaptive ramp metering).  The notion of 
“planning for operations” or “operations for planning” is motivating the seamless blending of 
planning strategies and operational measures to optimize system performance.   
 
This environment calls for the development of analysis, modeling and simulation tools capable of 
reflecting the dynamic interactions between planning strategies and network operations.  In the 
past, travel demand model systems have been limited in their ability to consider such dynamic 
interactions.  On the one hand, travel demand models purport to simulate choices related to activity 
generation, destination choice, mode and route choices as a function of socio-economic, 
demographic, built environment, and network attributes.  On the other hand, transportation 
network models and traffic microsimulation models have been used to simulate traffic flow 
dynamics at a fine level of spatial, temporal and network detail.  These two modeling enterprises 
have largely developed independent of one another; connections between them have been achieved 
mostly through loose sequential coupling of demand and network model systems, incapable of 
reflecting the impacts of real-time operational strategies on the full slate of travel choices and 
network dynamics. Mobile technologies now make it possible for travelers (on all modes in both 
personal and freight transportation domains) to adjust travel choices in response to prevailing or 
predicted network conditions. Unfortunately, integrated models of travel demand and network 
dynamics capable of fully accounting for such real-time phenomena have not yet matured to a 
stage where they can be implemented in practice.   
In light of the need for robust and behaviorally sensitive integrated transport demand and network 
models, this chapter presents a framework that reflects travel demand and network dynamics 
arising from real-time and proactive dynamic mobility/traffic management strategies. The 
framework can be enhanced through a series of levels, with each level more complex than the 
previous, but with the ability to account for a larger set of dynamic behaviors. The chapter presents 
various levels of dynamic integrated transport demand and network modeling  to demonstrate the 
efficacy of the approach.  
 
The scope of the framework presented here is limited to the integration of activity-based travel 
microsimulation model systems of travel demand with dynamic traffic assignment models of 
network dynamics. These model systems are used more frequently to simulate the impacts of 
dynamic mobility management strategies, because of their ability to accommodate time-space 
interactions at the level of the individual traveler (or vehicle). Incorporating interactions between 
travel demand choices and network dynamics within the four-step travel demand modeling 
framework is challenging, due to the inability to track individuals through space and time.  In 
addition, the use of activity-based microsimulation models in conjunction with dynamic traffic 
assignment models allows the recognition of behavioral heterogeneity in the population (for 
example, not everybody has the same value of time, inclination to use and follow traveler 
information, or level of schedule flexibility). Thus, the framework presented in this chapter is 
limited to the integration of activity-based microsimulation models of travel demand with dynamic 
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traffic assignment models.  The further integration of traffic microsimulation models is also 
beyond the scope of this discussion.    
 
5.1.1 Integrated models of transport demand and network dynamics  
Significant advances have been made in the development of integrated models that link state-of-
the-art, activity-based travel demand models (ABMs) with dynamic traffic assignment (DTA) 
models. While some of these models operate in a sequential coupling framework where exchange 
of information between the model systems occurs at the end of a full iteration of each model 
system, others employ a tighter integration where information is exchanged on a more continuous 
basis. Lin et al (2008) present the conceptual framework for an integrated ABM-DTA model 
system in which the model components are loosely coupled together in a sequential fashion; the 
travel times from the DTA model are fed back as input to the ABM, only at the end of a full model 
iteration. In other words, within-day or within-tour adjustments to travel choices (in response to 
network conditions) cannot be modeled using their framework. Hao et al. (2010) present the results 
from an integration of the TASHA ABM with MATSim, which constitutes another example of an 
integrated model system where the components are connected in a similar sequential paradigm. 
Bekhor et al (2011) discuss the results from an integrated model effort, where the Tel-Aviv ABM 
was coupled with MATSim. For purposes of integration, the time-of-day choice was disaggregated 
into fifteen distinct time periods, while considering activity duration constraints. Goulias et al 
(2012) present the results from an integration of the CEMDAP ABM with a multi-period static 
traffic assignment model and report on-going efforts for integration with a DTA model. All of the 
model systems discussed above are based on a loosely coupled or sequential integration paradigm 
where the ABM and DTA models communicate and exchange data only at the end of a full 
iteration. This sequential information exchange process renders the use of such models to 
realistically represent the impacts of network events or disruptions on activity-travel patterns quite 
challenging. In recognition of this limitation with sequentially integrated model systems, a stream 
of integrated models that adopt a much tighter integration framework have been developed. 
 
Balmer et al (2009) present results from an operational prototype of the MATSim integrated 
model. MATSim is comprised of several modular components that work in concert to link the 
activity-schedules obtained from an ABM with network phenomena captured by a DTA model. 
Pendyala et al (2012) present the first fully operational prototype of an integrated model called 
SimTRAVEL, in which the ABM and the DTA model systems constantly communicate and 
exchange data with each other on a minute-by-minute basis, thus rendering the integration process 
truly dynamic. Auld et al (2016) propose a conceptual framework and present results from a test 
implementation of POLARIS. POLARIS also executes a continuous exchange of information 
between the ABM and DTA components. Such a tight integration allows for realistic 
representation of impacts of network dynamics—and  real-time information systems and proactive 
traffic management strategies—on traveler behavior. 
 
Real-time information systems (RTIS) or advanced travel information systems (ATIS) may impact 
various dimensions of travel behavior, including destination, time-of-day, route, and mode 
choices. Several studies have attempted to model the influence of RTIS/ATIS on travel behavior. 
In an empirical study using an interactive simulator, Srinivasan and Mahmassani (2003) concluded 
that route-switching behavior is significantly influenced by the nature, timeliness, quality and 
extent of real-time information. Sun et al (2005) developed a model that employed Bayesian 
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updating approaches to account for the impact of travel information on activity-travel decisions. 
Jang et al (2013) proposed a utility maximization-based activity rescheduling model to allow 
adjustments in a traveler’s daily activity-travel schedule in response to time pressure or time 
surplus. Ouyang et al (2011) introduced an activity-based network user equilibrium algorithm for 
modeling activity-travel patterns under network congestions. Paz and Peeta (2009) proposed 
paradigms that enhance the effectiveness of real-time traffic routing strategies by explicitly 
accounting for driver’s likely response to path recommendations using an information-based 
network control approach.  
 
Considerable progress has been made recently in modeling/representing the influence of 
RTIS/ATIS on travel demand using integrated microsimulation model systems. Frei et al (2014) 
integrated demand models with weather-responsive network management methodologies and 
assessed the behavioral responses of travelers along several dimensions in response to weather-
responsive traffic management strategies (e.g., pre-trip information and rescheduled work and 
school hours). Zhang et al (2015) proposed a routing and guidance strategy (network assignment 
model) that can be integrated within an overall agent-based simulation model system. Their study 
involved modeling the impact of real-time network information on evacuation scenarios, but their 
framework has a scope for wider application. Xiong et al (2016) developed a model of en-route 
diversion by integrating an agent-based (microscopic) en-route diversion model with a 
(mesoscopic) DTA model. They conducted a simulation of the impacts of variable message signs, 
providing real-time information on a sub-network for the Washington/Baltimore region. 
 Bustillos et al (2011) studied the effects that pre-trip and en-route traveler information have on 
route choice. They developed models of congestion-responsive rerouting, pre-trip information- 
responsive rerouting, and en-route information-responsive rerouting, and then integrated these 
models into a DTA model. Konduri et al (2013) modeled the impact of network disruptions on 
activity-travel choice patterns under varying levels of traveler information provision using 
SimTRAVEL (Pendyala et al, 2012). Mitsakis et al (2015) proposed the development of an 
integrated framework for modeling the impacts of real-time advanced traveler information systems 
and applied the model system to a large-scale network for Thessaloniki, Greece. POLARIS (Auld 
et al, 2016) is another example of a model system capable of simulating the impacts of real-time 
information systems, by incorporating such behaviors as trip re-planning and en-route switching. 
Bellemans et al (2010) present the implementation framework of FEATHERS, a comprehensive 
model system capable of modeling travel scheduling decisions, within-day rescheduling, and 
learning processes of individual agents.   
 
Examples from the literature cited above illustrate the depth of interest in the development of 
integrated microsimulation models of activity-travel demand and network dynamics.  Efforts to 
develop such models continue to be rather fragmented, and there is no comprehensive modeling 
and simulation framework that can accommodate and reflect the varied impacts of the full suite of 
dynamic mobility management strategies. Seeking to fill this critical gap in knowledge, this 
chapter presents and describes the various levels of a comprehensive conceptual framework for 
integrated microsimulation modeling of transport systems that builds on the SimTRAVEL 
structure documented previously (Pendyala et al, 2012).  
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5.2 Levels of an Integrated Transport Modeling 
Framework  
 
This section presents conceptual designs of increasing levels of dynamic integration between an 
activity-based travel demand model and a dynamic traffic assignment model. It seeks to 
incorporate the simulation of the impacts of dynamic mobility management strategies on the 
activity-travel choices of agents in the system. The conceptual designs presented here build on the 
SimTRAVEL framework.  
 
5.2.1 Level Zero: Sequential Integration  
The simplest conceptual design of an integrated model system involves the loose sequential 
coupling of the two major model components: ABM and DTA models. In the sequential model 
design, the activity-based model system and the dynamic traffic assignment models are run 
sequentially in their entirety in a looping fashion. The ABM is run for a 24-hour period, for 
example, to simulate daily activity-travel patterns for all agents in the synthetic population of the 
region. Travel time, cost and other skim (network attribute) matrices are derived from the transport 
network files. The entire trip list generated by the ABM is then input into the DTA model. The 
DTA model routes and simulates all of the trips (or tours, in some instances) on the network. 
Within the DTA model, time-dependent, shortest paths are computed and trips are routed on these 
paths. Iterations internal to the DTA model may be invoked to achieve dynamic user equilibrium, 
where trips between origins and destinations are routed along k time-dependent shortest paths to 
reflect traveler route choice behavior. When travelers on the network can no longer improve their 
travel times by switching routes, as evidenced by the computation of a gap function (Chiu et al, 
2011), the model outputs assignment completes, combining time-of-day with a new set of skim 
matrices that can be input into the ABM for the next iteration of the integrated model system. The 
ABM uses these time-dependent skim matrices to generate a new daily activity-travel pattern for 
each agent in the population and the new set of trips or tours are input to the DTA model. The 
DTA model assigns the trips and writes out an updated set of skim matrices. This process is 
continued until there is convergence in the OD matrices output by the model system from one 
iteration to the next. Other mechanisms to monitor and test convergence include a check of 
consistency between time-dependent skim matrices output by the DTA model (and those used to 
simulate activity-travel demand choices in the ABM), and the use of a difference function that 
demonstrates stability in link flows and end-to-end travel times across successive iterations of the 
integrated model system. This sequential paradigm is the simplest level of model integration and 
has been documented in the literature (e.g., Lin et al, 2008). However, this model integration 
platform is not responsive to network dynamics and real-time information that may be available 
to a traveler. If there is an instantaneous network disruption (due to an incident) that lasts for a 
finite period of time and results in a substantial increase in travel times along certain links of the 
network, travelers may divert to alternative routes or adjust their activity-travel schedule to 
accommodate the unexpected disruption. However, in the sequential paradigm, there is no ability 
to simulate such behavioral adaptation mechanisms.   
 
5.2.2 Level One: Dynamic Integration – No Real-time Information 
The first level of dynamic integration corresponds to the SimTRAVEL framework, which is 
documented in Pendyala et al (2012). SimTRAVEL refers to a Simulator of Transport, Routes, 
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Activities, Vehicles, Emissions, and Land and was developed as part of an early Exploratory 
Advanced Research Program (EARP) project of the U.S. Department of Transportation. The 
framework is inspired by earlier work presented by Kitamura et al (2008), who envisioned a tightly 
integrated modeling platform to reflect behavioral dynamics both on the demand side and network 
side. The framework is briefly presented here; more details are available in Pendyala et al (2012).  
 
The original SimTRAVEL framework is shown in Figure 5.1. In this framework, the ABM and 
DTA models are run in parallel with data exchange occurring along the continuous time axis at a 
time-step specified by the analyst. Data may be exchanged at the resolution of one minute or more 
aggregate time-steps, depending on the size of the network and the number of trips being 
simulated, to manage computational complexity. An initial set of coarse time-of-day period-
specific network skim matrices are obtained from an existing, four-step travel demand model or a 
set of bootstrap runs, in which the ABM and DTA models are run in sequence (Level 0). The 
dynamic integrated platform is then launched with the ABM, simulating activity-travel choices at 
the resolution of one minute. In each minute of the day, the ABM provides a list of trips to the 
DTA model that are departing within that minute. The DTA model then routes and simulates the 
trips on the network along time-dependent, shortest paths that are identified based on link travel 
times computed and saved from a prior iteration of the model system. In each minute of the 
simulation day, travelers will arrive at their destinations, and the DTA model will send the set of 
trips (travelers) that have arrived to the ABM so that the ABM can determine the subsequent 
activity-travel choices based on destination arrival time. When trips (travelers) are navigating the 
network, the ABM is not concerned about them, even though the DTA model updates traveler 
(vehicle) position on the network in six-second time steps; the ABM is concerned with simulating 
subsequent activity-travel choices only after the traveler has arrived at the intended destination. In 
simulating activity-travel choices (such as activity duration, next activity to be pursued, destination 
and mode choice), the ABM explicitly recognizes and considers time-space prism constraints 
associated with mandatory or fixed activities; the need to take care of household members and 
obligations; modal availability; and history of activity-travel engagement throughout the day up to 
the decision point in question. If a traveler is delayed on the network (e.g., congestion or an 
incident) and arrives later than expected at the destination, then the ABM will simulate subsequent 
activity-travel choices accordingly (recognizing the delayed arrival and the time-space prism 
constraints).  By ensuring that activity-travel demand choices are exactly in sync with actual travel 
times experienced by the travelers on the network, the dynamic integrated platform ensures that 
there are no overlaps and gaps in the simulation of daily activity-travel patterns and schedules.   
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Figure 5.1 SimTRAVEL integrated modeling framework. 

 
In the original SimTRAVEL integrated modeling framework, travelers do not have information 
about prevailing network conditions when making decisions about activity-travel schedules, 
routes, modes and destinations. The DTA model outputs time-dependent skim matrices at the end 
of each iteration. These time-dependent skim matrices are used by the ABM in the next iteration 
to simulate activity-travel choices along the continuous time axis. Once again, the ABM and DTA 
models exchange data continuously, but all routes and activity-travel decisions are based on travel 
times and costs output, which are saved from the prior iteration of the model run.  In other words, 
the iterative process mimics a day-to-day learning and information updating process, where 
travelers experience the network on one day, update their memory regarding experienced travel 
times, and then make modifications to their activity-travel choices in subsequent days based on 
the accumulated memory of experiences.The process continues until convergence is achieved, 
wherein OD matrices show no appreciable change from one iteration to the next on the ABM side, 
and the gap function shows no further decrease on the DTA model side. The model is said to have 
converged when both criteria are met. This tight dynamic integration framework can be further 
extended to incorporate the simulation of the impacts of dynamic mobility management and real-
time information strategies.   
 
5.2.3 Level Two: Dynamic Integration – Only Pre-trip Information  
In the next level of dynamic model integration, the SimTRAVEL platform is enhanced to 
accommodate the effects of the availability of pre-trip information about prevailing network 
conditions. However, travelers do not have access to real-time travel information in the middle of 
a journey; they are able to make activity-travel choices that are network-sensitive based on 
information they access prior to embarking on a trip. For example, suppose there is a network 
disruption (planned or unplanned) that affects prevailing travel times. A traveler will be able to 
access pre-trip, real-time information about prevailing network conditions and make activity-
travel choices (activity type, mode, destination, and accompaniment) – subject to time-space 
prism constraints – that take such information into account. A simplified representation of this 
conceptual design is shown in Figure 5.2.  
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Figure 5.2 Dynamic SimTRAVEL framework – Level 2 pre-trip Information. 

 
To illustrate this level of the framework, consider a network disruption event as shown in Figure 
5.2. If an individual has pre-trip information, then that individual should be provided data about 
prevailing network conditions and travel times rather than travel time matrices from the prior 
iteration. Those with no pre-trip information, on the other hand, will rely on historical (prior 
iteration) accumulation of travel time information to make activity-travel choices. Therefore, there 
are different traveler segments in the population: those who have pre-trip information and use 
prevailing network travel time information; and those who do not have pre-trip information and 
use network travel time information saved from prior iterations.  In this conceptual design, the 
DTA model outputs network travel times at regular intervals (as small as 1 minute, but a 15 minute 
time step may be sufficient to reflect lag in information availability). Travelers with pre-trip 
information consult these travel time matrices (reflecting prevailing network conditions) when 
making activity-travel choices. The simulation continues throughout the day, with information-
equipped travelers constantly utilizing real-time information on prevailing network conditions as 
they execute their activity-travel patterns and schedules. Travelers with no pre-trip information 
rely on accumulated history of travel time information in decision-making, and may therefore 
encounter severe congestion and delayed arrival times as a result of the disruption. The ABM 
simulates their activity-travel choices at each decision point, recognizing their situation and time-
space prism constraints. Presumably, those who have access to pre-trip information about 
prevailing network conditions can avoid the disruption effects (to the extent possible) and do not 
experience delays and setbacks as severe as those who do not have access to such information.  
 
It should be noted that Figure 5.2 does not represent an iterative process wherein the model 
components are run repeatedly to convergence. Whether or not the model system needs to be run 
in an iterative process may depend on the specific network disruption context being considered.  
For example, if the network disruption occurs because of an unexpected accident or spill, it may 
be conjectured that the network will experience disequilibrium conditions where travelers 
experience chaos and delay. In such a context, the intent of the analysis is to determine the impacts 
of an unexpected network disruption on activity-travel patterns, delays, network conditions, and 
travel times and speeds. A single iteration of the integrated model run should provide this 
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information. On the other hand, suppose the disruption is a planned network event, such as a work 
zone that is going to be present for several months. In such a context, it may be conjectured that 
travelers will learn from one day to the next, and use both accumulated history of experienced 
travel times as well as prevailing network conditions (if they have pre-trip information) to make 
activity-travel choices. As individuals learn how the network is performing in the presence of the 
work zone, they may use updated information about network travel times to alter their activity-
travel patterns and schedules; the iterative process will capture such a learning process, and 
analysts may be interested in determining the “new normal” into which traffic patterns will settle 
over a number of days. The feedback loops are removed in Figure 5.2 (as well as figures 
representing subsequent levels of integration) to reflect the former (unexpected) network 
disruption state.  
 
5.2.4 Level Three: Dynamic Integration – Pre-trip and En-route Information 
with Route Diversion Only 
The next level of dynamic integration adds the ability to account for the effects of real-time, en-
route traveler information on route choice and route diversion that may occur in response to 
network dynamics. A graphic representation of this level of integration is shown in Figure 5.3. 
This level of the SimTRAVEL framework continues to account for the effects of pre-trip 
information that individuals may have about prevailing network conditions. Thus, the ABM in the 
SimTRAVEL framework simulates activity-travel choices in a network-responsive manner for 
those with pre-trip information, but continues to use accumulated history of travel time information 
from prior iterations for those with no information. In addition, individuals who have en-route 
travel information can adjust their route in response to network travel times. At regular time 
intervals (specified by the analyst), the DTA model will check on the status of a portion of travelers 
in the network who have real-time en-route travel information. The DTA model will determine 
whether the prevailing travel time to destination satisfies the time-space prism constraints. If time-
space prism constraints are not violated, then the individual (traveler or vehicle) continues on the 
same path until the next check is done n minutes later.  If a traveler is on a path that is disrupted 
or experiencing unusual congestion, then the DTA model will search for alternate, time-dependent, 
shortest paths based on prevailing link travel times and re-route the traveler to the best alternative.  
If there is no path that allows a traveler to reach the destination without violating the time-space 
prism constraints, then the best feasible path is chosen and a violation of the time-space prism 
constraints is permitted (e.g., being late for work, school, child pick-up, or a business meeting).   
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Figure 5.3 Dynamic SimTRAVEL framework – Level 3 pre-trip and en-route information 

with route diversion only. 
 
In this configuration, the traveler is not allowed to abandon or re-schedule the activity, switch to 
a different destination, or make any other adjustments to the activity-travel demand decisions 
that generated the original trip. Presumably, an individual with information is making well-
informed travel choices, and then attempts to avoid the disruption using en-route traveler 
information that facilitates route diversion. Note that this level of model integration also supports 
a scenario where individuals do not access pre-trip information, but have access to en-route 
information (for instance, via variable message signs) to exercise route diversion. In this case, 
the traveler uses historical network travel time skims from prior iterations to make activity-travel 
choices, and then adjusts route on the network in response to en-route traveler information.  
 
5.2.5 Level Four and Beyond – Pre-trip and En-route Information with Full 
Activity-Travel Choice Adjustments 
The final level of the SimTRAVEL framework is where travelers have access to both pre-trip and 
en-route travel information, and can adjust the full complement of activity-travel choices in 
response to the information they access. Similar to the previous levels, individuals with pre-trip 
information about prevailing network conditions will rely on such information to make activity-
travel choices in the ABM, as opposed to individuals with no information who use the historical 
accumulation of travel time matrices from prior iterations to make activity-travel choices. 
Individuals with en-route travel information can now adjust activity type choice, destination 
choice, mode choice, and accompaniment choice in addition to route choice (which was 
accommodated in the prior level).   
 
Just like the prior level, individuals on the network with en-route travel information are checked 
every n minutes to determine if the traveler should be diverted to an alternate path. In general, it 
is assumed that individuals will first try to simply change path and find an alternative route to their 
intended destination and activity to minimize disruptions to the activity schedule. In previous 
work, Ye and Pendyala (2007) found that individuals first exercise choices that are least 
constrained and minimize disruptions before modifying more constrained choices. If the traveler 
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should be diverted (because the current path is not tenable given time-space prism constraints), 
then the best feasible alternate path is identified by the DTA model with a view to facilitate route 
switch. If, however, the best feasible alternative path is also deemed unacceptable (because a 
substantial violation of the time-space prism constraints would occur), then the individual is tagged 
as a traveler in distress. In each one-minute time step of the simulation, the DTA model now 
returns to the ABM two sets of trips, or, the set of trips that have routinely arrived at their 
destination and the set of trips that are in distress. The latter set of trips correspond to travelers 
who are stuck on the network and have no feasible alternative path that can get them to their 
intended destination on time (without violating time-space prism constraints).   
 

 
Figure 5.4 Dynamic SimTRAVEL Framework – Level 4 Pre-trip and En-route Information 

with Full Activity-Travel Choice Adjustments 
 
For the travelers that are tagged as being in distress, the ABM will determine if alterations to their 
travel choices are in order. Travelers may choose to switch to an alternate destination if the activity 
in question is discretionary in nature and has flexibility with respect to location. After choosing a 
new destination (based on prevailing network conditions), the trip is sent back to the DTA model 
(in the next one-minute time step) for routing and simulation on the network. If the activity in 
question does not have location flexibility or there is no alternate destination that meets time-space 
prism constraints, then the individual is assumed to switch modes or abandon the activity 
altogether. Mode switching is unlikely to occur mid-journey, so this particular behavioral 
adaptation choice is suppressed in the current framework.  However, with the increasing popularity 
of ride-sourcing and vehicle-sharing services, it is plausible that mid-journey mode-switching will 
become more feasible. In addition, in locations where park-n-ride lots are available for fixed and 
dedicated guideway transit services, an individual may divert to the nearest park-n-ride facility 
and hop on the train or dedicated busway for the remainder of the trip. Finally, an individual may 
abandon the activity in question and proceed to the next fixed activity defined by the time-space 
prism constraints, switch to a different (discretionary) activity type which would entail choosing a 
new destination, or simply return home (e.g., work or study from home). After the ABM simulates 
the choice adjustment made by the traveler, the information is sent to the DTA model and the DTA 
model routes and simulates the traveler on the network, starting from the point where the traveler 
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was originally tagged as being in distress. An abandoned activity may be pursued later in the day 
depending on time-space prism constraints.  Because the activity-based model recognizes history 
dependency in simulating activity-travel choices, an activity that was abandoned at one point in 
the day may be performed later in the day (because the model recognizes that the activity was not 
performed earlier).      
 
It is plausible to envision levels of model integration that go beyond the ability to change route 
and activity-travel demand choices in response to real-time travel information facilitated by 
connectivity, communications and technology. A further level of the model integration framework 
would accommodate re-allocation of tasks and activities among household members.  Therefore, 
when a member of the household abandons a certain activity, the activity may be re-assigned to 
another household member who has an open time-space prism that could accommodate the 
activity. However, this reassignment of tasks within the household can only occur for specific 
types of activities and for specific individuals (for example, a work activity cannot be reassigned, 
and small children cannot go to the bank). The incorporation of a full-fledged array of intra-
household interactions with rule-based constraints remains a fruitful area of further research. 
Finally, the ultimate level of model integration would incorporate interactions across households 
or colleagues, where some tasks are reassigned to non-household-members.   
 

5.3 Case Study 
 
This section presents results of a case study application that demonstrates the efficacy of the 
framework, and the detailed levels of integration that capture the effects of dynamic mobility 
management strategies and real-time traveler information on activity-travel patterns and network 
dynamics. In implementing the framework, it is assumed that any and all information about 
network conditions arising from the introduction of dynamic mobility management strategies or 
the occurrence of a network disruption can be translated into equivalent time and cost units, or 
mobility options (alternative routes, destinations, and modes). Thus, if there are dynamic pricing 
strategies, they will result in changes in travel times and costs. A new intelligent traffic signal 
timing algorithm will affect travel times. A dynamic parking management system will impact 
terminal times or parking costs. Therefore, each DMA or ATDM strategy that may be implemented 
to improve system performance is represented in terms of the time and cost differences that the 
strategy engenders for different travelers. With increasing connectivity in vehicles, it is likely that 
travelers will avail of information to learn about alternative destination or modal options (e.g., 
ride-sourcing) that they would not have considered otherwise. In other words, individuals may be 
able to take more risks and try new possibilities when armed with information.   
All travelers in the synthetic population are tagged with an information-type flag: individuals with 
no information, pre-trip information only, en-route information only, and both pre-trip and en-
route information. These four information groups will exercise activity-travel decisions and route 
choices based on different sources of information. The DTA model will provide information about 
network conditions, both historical (saved from prior iterations) and prevailing (based on current 
traffic), and users will use the appropriate information depending on their information type status. 
 
Two specific model systems were used for this illustrative demonstration of the SimTRAVEL 
framework. The activity-based travel demand model system is openAMOS, an open-source 
activity mobility simulator (SimTRAVEL, 2016). This ABM provides a platform for 
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microsimulating activity-travel patterns of individuals in a synthetic population, while specifically 
accounting for time-space prism constraints, coupling constraints, and modal availability 
constraints. Unlike many tour-based models that have been implemented in practice (e.g., 
Outwater and Charlton, 2006), openAMOS is a continuous-time evolutionary activity-based 
model, where the activity-travel pattern evolves over the course of a day as individuals make 
decisions regarding activity engagement at various decision-points and subject to a variety of 
constraints. 
 
In the openAMOS modeling framework, time-space prism constraints are modeled first to develop 
an activity skeleton for individuals in a household. Then, beginning at the start of the day, 
individuals pursue various secondary, flexible and discretionary activities within available time-
space prisms, while adhering to various constraints that the skeleton imposes. This evolutionary 
activity-based model design is ideal for tight coupling with a DTA model, where the ABM and 
DTA models exchange information about trips and travelers on a continuous (one-minute time 
step) basis. The DTA model used in this illustrative exercise is DTALite (Zhou and Taylor, 2014), 
a dynamic traffic assignment model capable of routing and simulating trips through a network 
while recognizing the time-dependent nature of shortest paths. The model system is able to output 
information about prevailing and historical network conditions (e.g., travel times) in the form of 
time-dependent matrices that travelers are assumed to use when making activity-travel choices. 
Although this exercise utilizes these specific model components, the SimTRAVEL framework 
may be implemented using any ABM and DTA models that can be tightly coupled together and 
engineered to exchange data at a fine temporal resolution. By tightly integrating the two models 
so that specific travelers can be tracked through both the ABM and DTA models, the SimTRAVEL 
framework constitutes a true agent-based simulation model system. 
 
In this illustrative example, the first three levels of the SimTRAVEL framework are demonstrated 
using the small Sioux Falls network that includes 24 traffic analysis zones (TAZs) and 76 network 
links (at 60 mph free-flow speed). To ensure that significant traffic volumes and congestion levels 
would be realized on the network, a synthetic population of 24,853 persons residing in 8,259 
households was generated using the population synthesizer embedded within openAMOS, based 
on assumed control distributions on various socio-economic variables (derived from census data). 
The SimTRAVEL framework was applied to a number of network scenarios to demonstrate the 
ability of the framework to reflect the impacts of network dynamics and traveler information on 
activity-travel patterns and system outcomes. The scenarios implemented are as follows:  

• Baseline Scenario: No network disruption 
• Scenario 1: Network disruption with no traveler information (SimTRAVEL Level 1) 
• Scenario 2: Network disruption with pre-trip traveler information only (SimTRAVEL 

Level 2) 
o Individuals in 50 percent of households have pre-trip information; others have no 

information  
• Scenario 3: Network disruption with pre-trip and en-route traveler information allowing 

only route changes in the middle of a journey (SimTRAVEL Level 3) 
o Individuals in 50 percent of households have pre-trip and en-route information; 

others have absolutely no information 
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The only scenario that was not implemented is that where individuals are tagged as being in distress 
if they cannot identify a feasible alternative path, and are then sent to the activity-based model to 
determine if changes in activity-travel demand choices are warranted. In the SimTRAVEL 
framework, it is possible to see how individual travelers behave in the presence of information and 
when confronted by a network disruption. Such disaggregate output can be very valuable in 
identifying groups that may be disproportionately adversely affected by a certain disruption. The 
disaggregate individual-level activity-travel pattern outputs can also help identify the types of 
adjustments that individuals are making in response to network disruptions and traveler 
information provision. The network disruption involved constraining three of the 76 links during 
key periods of the day. Heavily traveled links were selected for disruption. One link was assumed 
to have a speed of 10 mph during 8 a.m. to 9 a.m., another link was assumed to have this speed 
between 12 noon and 1 p.m., and a third link was assumed to experience 10 mph speed during 5 
p.m. to 6 p.m. Appropriate capacity restrictions were also imposed on the links during these time 
periods. DTALite identified alternate paths for individuals who had en-route travel information 
and provided skim matrices with information about prevailing network conditions, so that 
individuals with pre-trip information could make informed activity-travel demand choices.   
 
The first column shows travel characteristics for the baseline case where no disruption is 
introduced in the network. Average trip duration is 9.26 minutes per trip and average trip length is 
8.23 miles. Given the high free-flow speed of the links in the network, these statistics are consistent 
with expectations. In scenario 1, where a severe disruption is introduced, average trip duration 
increases as expected. In the absence of any information, and in view of the disruption, DTALite 
routes individuals on somewhat more circuitous paths leading to an increase in trip length as well. 
The trip length and trip duration are both higher during the disruption period when compared with 
the overall daily average. This finding is consistent with expectations, as travelers are likely to 
experience disruptions and delays in the absence of any information.  
 
Results of Scenario 2 clearly demonstrate the benefit of providing information about prevailing 
network conditions to travelers. Armed with real-time, pre-trip information, travelers can make 
more informed decisions with respect to activity-travel schedules and location choices. As a result, 
the average trip duration and average trip length for travelers with pre-trip information is 
considerably lower than corresponding values for individuals without any traveler information.  
Travelers with pre-trip information are better off during the disruption period as well. Compared 
to the case where nobody had any information, travelers with no information are better off in the 
scenario when individuals in one-half of the households are equipped with information. As the 
individuals with information make more informed decisions, travelers with no information benefit 
as well due to reduced congestion and delays.   
 
Finally, results of Scenario 3 demonstrate the case where individuals in one-half of the households 
have pre-trip and en-route travel information about prevailing network conditions. It is interesting 
to note that those with information are better off than those without information (similar to 
Scenario 2). However, these individuals (with both pre-trip and en-route information) experience 
a degradation in average trip duration and trip length in comparison to the case where they had 
only access to pre-trip information. The differences are modest, but very systematic, suggesting 
that these differences are not attributable to stochastic randomness inherent to microsimulation 
model systems.   
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Table 5.1 Results of Illustrative Demonstration of SimTRAVEL Integrated Modeling Framework 

 Travel Characteristic 

Baseline: 
No 

disruption 

Scenario 1: 
Disruption 

Scenario 2: Disruption Scenario 3: Disruption 

100% No 
Information 

~50% No 
Information 

~50% Pre-trip 
Information 

50% No 
Information 

50% Pre-trip + 
En-route 

Information 
Total trips 115683 115625 59216 56393 59060 56404 
Total number of persons 24853 24853 12729 12124 12729 12124 
Trip rate 4.655 4.652 4.652 4.651 4.640 4.652 
Total travel time 1071410 1079195 553535 523511 552639 525363 
Total travel distance 952195.75 959231.75 491991.25 464131.75 491307.75 466323.25 
Average travel time (min) 9.26 9.33 9.35 9.28 9.36 9.31 
Average travel distance (mile) 8.23 8.30 8.31 8.23 8.32 8.27 

During disruption time interval 
Total travel time 232011 236504 204531 202808 205787 203622 
Total travel distance 205343.25 209824 181202.25 179587 182555.5 180569.25 
Average travel time (min) 9.26 9.40 9.33 9.30 9.37 9.34 
Average travel distance (mile) 8.19 8.34 8.26 8.23 8.31 8.28 
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A further examination of the phenomena at play suggested that re-routing travelers resulted 
in longer trip lengths, as DTALite attempted to re-route travelers while mid-journey, 
resulting in more circuitous paths and increased trip durations. In the case where travelers 
were armed only with pre-trip information, they made informed decisions and stayed on 
the shortest path that had been designated at the time that they embarked on the trip. In the 
case where travelers adjust their route during the course of the journey, two factors are 
found to contribute to increased travel times and distances. First, travelers switch to a more 
circuitous path in an attempt to divert and abide by time-space prism constraints. Second, 
the alternative paths themselves experience greater congestion as individuals are diverted 
by DTALite.  In other words, it appears that travelers are being switched to alternative 
paths even when the path will eventually prove to be detrimental (as more travelers switch 
to the alternative path). 
 
To address this issue, multiple iterations internal to DTALite need to be executed so that 
travelers are diverted to alternative paths in a more optimal fashion. In this exercise, 
multiple iterations of DTALite were not performed, resulting in a diversion pattern that 
was suboptimal. The enumerated alternative paths were circuitous and became congested 
due to excessive diversion, resulting in greater delays for those with both pre-trip and en-
route information. This illustrative demonstration shows that the SimTRAVEL framework 
is able to capture dynamics of activity-travel choices and network attributes, and reflect the 
impacts of real-time traveler information and dynamic mobility management strategies. 
 

5.4 Conclusions 
 
The advent of the information era has ushered in a new suite of dynamic mobility 
management strategies for proactively managing travel demand, freight and passenger 
travel choices, and network performance. The suite of strategies included under the 
Dynamic Mobility Applications (DMA) and Active Transportation and Demand 
Management (ATDM) umbrella include measures that affect both travel demand choices 
(activity generation, destination choice, and mode choice, for example) as well as network 
attributes (e.g., in terms of travel time, cost, and intersection delay). As the profession seeks 
to integrate planning and operations through the deployment of proactive dynamic mobility 
management strategies, there is a growing need for integrated model systems that are 
capable of adequately reflecting behavioral dynamics and network dynamics, and the 
continuous interaction that exists between them.  
 
This chapter presents various levels of a dynamic integrated modeling framework where 
an activity-based travel microsimulation model is tightly coupled with a dynamic traffic 
assignment model. In the proposed framework, the two model components are able to 
communicate with one another along the continuous time axis, so that trips or tours 
generated by the activity-based model are routed and simulated on the network as they 
happen, and activity-travel demand choices made by travelers recognize actual experienced 
network conditions as travelers go about their daily lives. Through such a tight coupling, it 
is possible for the framework to simulate the impacts of real-time information provision 
and operational strategies aimed at influencing traveler behavior and optimizing network 
performance.  
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Various levels of the integrated modeling framework, referred to as SimTRAVEL, are 
described in detail. The increasingly detailed and capable levels of the framework 
accommodate scenarios where a portion of the travelers are equipped with pre-trip 
information or en-route travel information (or both) about prevailing network conditions 
at all times. When travelers are armed with such information, they may switch routes or 
adjust travel demand choices in response to network disruptions and traveler 
recommendations offered by various connected platforms. In the most detailed level of 
integration, travelers will be able to adjust their route or adjust activity-travel demand 
choices mid- journey in response to network conditions.  
 
The efficacy of the integrated model system is demonstrated through an illustrative case 
study of the small Sioux Falls network, albeit with a sizeable population to realize network 
congestion. It is found that the model is capable of simulating network performance under 
alternative information scenarios and provide results that are consistent with expectations 
with improvements in performance seen in the information provision scenarios. The 
scenario where travelers had both pre-trip and en-route information showed that they 
experienced a degradation in performance (travel time and trip length), compared to the 
scenario where they had only pre-trip information.  It appears that travelers are being 
diverted to longer, alternative paths in the en-route information scenario, resulting in 
congestion on the alternative paths; this calls for the execution of route switching patterns 
in the network model, such that diversion is done in a more user optimal fashion. This 
would require that the dynamic traffic assignment model be run through multiple iterations 
until an equilibrium (in terms of route switching) is achieved.  
 
The efficacy of running such large scale integrated model systems for large networks is yet 
to be demonstrated and the validity of the results furnished by such large scale integrated 
models (in response to exogenously specified scenarios) remains largely unconfirmed. 
When integrated model systems are applied in the context of emerging travel demand 
management and technology-based scenarios, they generally provide indications that are 
consistent with the patterns of behavior found in the survey data sets that informed the 
model specifications.  While this is reasonable as a point of departure, there is still a severe 
paucity of information on how individuals actually respond to dynamic mobility 
management strategies when implemented in the field. The predictions from SimTRAVEL 
or any integrated transport model system need to be validated against real-world data 
before they can be applied for “planning for operations.” In addition, references such as 
the TCRP Report 95 Collection (TCRP, 2016) would provide data about traveler response 
to system changes that can be used to validate predictions from novel integrated model 
systems.    
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       6. OUTREACH AND TECHNOLOGY  
 
This chapter presents the outreach plan and technology transfer activities proposed as part 
of this SHRP2 C10 project. The main objective of the outreach and technology transfer 
activities is to provide effective training of agency users for the practice-ready integrated 
models (InSITE ABM-DTALite and SILK AgBM-DTALite) and related simulation tools 
(DTALite and InSITE ABM). The secondary objective is the development of workshops 
with long-term value to the partner agencies: Maryland State Highway Administration 
(MD SHA) and the Baltimore Metropolitan Council (BMC).  
 
The planned activities are grouped into four categories of workshops based on the 
simulation tools as follows and are described subsequently: 
 
 

(1) DTALite 
a. DTA Simulation for planned applications 
b. Calibration and Validation of DTA Models. 

(2) InSITE ABM 
a. Simulation for planned applications  

(3) SILK AgBM-DTALite 
a. Simulation for planned applications  

 
(4) InSITE ABM-DTALite 

a. Simulation for planned applications 
 
 
DTALite is the common link between the integrated models, and thus will receive more 
attention through two workshops. The first workshop will focus on simulation for planned 
applications similar to the other workshops for the other models, with a second workshop 
focusing exclusively on calibration and validation of DTA models. Workshops for the 
InSITE ABM and each of the integrated models are also planned with a focus on simulation 
for planned applications only; however, there will be discussions about validation of these 
models that build upon the DTALite workshops. 
 

6.1  Planned Workshops 
 
6.1.1 Planned Activities 
The planned workshops are divided into four groups as presented in Figure 6.1: DTALite, 
InSITE ABM, and the integrated models (SILK AgBM-DTALite and InSITE ABM-
DTALite). The order of the workshops in terms of the timeline is: DTALite, SILK AgBM-
DTALite, InSITE ABM, and InSITE ABM-DTALite. The actual dates and times of the 
workshops will be decided in coordination with the partner agencies. 
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Figure 6.1 Groups of workshops 

 
DTALite 
DTALite, an open-source light-weight, mesoscopic DTA simulation package, in 
conjunction with the Network eXplorer for Traffic Analysis (NeXTA) graphic user 
interface (GUI), has been developed to provide transportation planners, engineers and 
researchers with a theoretically rigorous and computationally efficient traffic network 
modeling tool.  
 
DTALite is the common intersection of the two integrated models; therefore, the first 
workshops will focus on DTALite. The main activities of these workshops are briefly 
described in Table 6.1. The goal is to prepare the users for the following tasks: 
 

• Preparation of inputs for applications 
• Running the model and understanding the output 
• Calibration and validation of the DTA models 

 
The main applications of interest are transportation system management and operations 
(TSM&O), and several case studies outlined in Figure 6.1 will be prepared as examples for 
the users. 
 
InSITE ABM 
InSITE is an activity-based model system composed of interconnected, discrete choice 
models representing choices at distinct dimensions (e.g., travel mode, destination) that 
focus on decisions related to daily activity and mobility for a typical weekday. InSITE 
adopts the day activity-schedule approach, where a day activity schedule is defined through 
the concepts of activity pattern and activity schedule. The activity pattern defines the 
participation in activities as primary and secondary. Primary activities are the anchors of a 
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tour. For example, a home-to-work trip and a work-to-home trip represent a tour, with work 
as primary activity. Secondary activities are intermediate stops within a particular tour (i.e., 
stopping for shopping at the work-to-home half tour). The activity schedule adds detailed 
information to the activity pattern about tours, such as timing, travel mode, destination of 
primary activity, and also the stops for secondary activities within the tours. 
 
As part of their activities with the Baltimore Metropolitan Council (BMC), Cambridge 
Systematics has already conducted several workshops to instruct and transfer InSITE ABM 
to BMC. They have also prepared several documents to support BMC in learning how to 
use this model. The team plans to leverage this previous work to hold a workshop about 
using the InSITE ABM for applications.  
 
The main activities of this workshop are briefly described in Table 6.1. The goal is to 
prepare the users for the following tasks: 
 

• Preparation of inputs for applications 
• Preparing configuration files for applications 
• Running the model and understanding the output 

 
The main applications of interest are long-term transportation planning projects; several 
case studies outlined in Figure 6.1 will be prepared as examples for the users. 
 
An important challenge of the InSITE ABM is understanding the wealth of output of this 
model, so the team will also work on preparing visualization tools to help the agencies gain 
a good understanding of how to use the output for their own analyses. 
 

 
Figure 6.2 Coverage of DTALite and SILK AgBM-DTALite 
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SILK AgBM-DTALite 
SILK-AgBM is an agent-based travel behavioral model system that emphasizes the role of 
Searching, Information, Learning and Knowledge (SILK). It can be efficiently interfaced 
with a dynamic traffic assignment model. SILK AgBM does not only rely on rules 
extracted from data mining to explain behavior, but also theorizes a multidimensional 
knowledge updating, search start/stop criteria and search/decision heuristics. These 
behavioral modules are formulated, and empirically modeled and integrated, in a unified 
and coherent system. Procedural and dynamic behavioral rules are estimated to represent 
rich behavior in travel mode, departure time, route and en-route diversion choices. They 
can also be enhanced to potentially accommodate real-time decision making on the part of 
the traveler and the driver response to network conditions/congestion and real-time traveler 
information (in addition to a host of other dynamic mobility applications and active traffic 
and demand management strategies). SILK-AgBM is integrated with a dynamic traffic 
simulation tool named DTALite. Among a number of DTA simulators and software 
packages, DTALite is an open-source mesoscopic (i.e., a resolution level that lies between 
macroscopic and microscopic) DTA simulation package. 
 
The SILK AgBM-DTALite model (and also the DTALite model) has a wide coverage, as 
shown in Figure 6.2, and a significant number of completed applications as presented in 
Figure 6.1 and 6.2.  
 
The team will follow an incremental approach to transfer the SILK AgBM-DTALite 
model. The team will start the applications with one behavioral dimension (e.g., departure 
time choice), and the application with more than one behavioral dimension (travel mode, 
pre-trip and en-route choices) will be transferred later within the workshop. 
 
The main activities of this workshop are briefly described in Table 6.1. The goal is to 
prepare the users for the following tasks: 
 

• Preparation of inputs for applications 
• Configuration of the model to use multiple behavioral dimensions 
• Running the model and understanding the output 

 
The main applications of interest are transportation system management and operations 
(TSM&O); several case studies outlined in Figure 6.1 will be prepared as examples for the 
users. 
 
InSITE ABM-DTALite 
The integration pursued between InSITE and DTALite falls in the sequential integration 
paradigm. In this paradigm, the travel demand model (InSITE) and the DTA model 
(DTALite) are run in iterations, with a single “big loop” consisting of an iteration of the 
travel demand model followed by a run of the DTA model. The travel demand information 
(e.g., agents with their activities and travel decisions, as well as characteristics) is passed 
to the DTA model within each big loop; travel time information resulting from the dynamic 
assignment is passed back to the travel demand model for use as input (e.g., update activity 
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pattern choices) in the next big loop. Note that DTA models themselves are run iteratively, 
and so there are several “small loops” of the DTA run within each “big loop.” A number 
of “big loops” are run until a measure of convergence is achieved, where the change in 
travel times (or some other measure) from one big loop to the next is within a specific 
tolerance. The data exchange between InSITE and DTALite is such that an agent is 
preserved during the exchange of data from InSITE to DTALite and vice versa. Thus, the 
integrated InSITE-DTALite model is fully disaggregated. 
 
The InSITE ABM-DTALite is a straightforward integration of InSITE ABM and DTALite; 
its outputs are the same outputs of InSITE ABM and DTALite, with the addition of a 
convergence measure output for the integrated model. Therefore, we will leverage the 
previous workshop materials of DTALite and InSITE ABM. 
 
The main activities of the workshop for this integrated model are briefly described in Table 
6.1. The goal is to prepare the users for the following tasks: 
 

• Preparation of inputs for applications 
• Preparing configuration files for applications 
• Understanding the convergence measure for the integrated model 
• Running the model and understanding the output 

 
The main applications of interest are long-term transportation planning and similar 
applications to the InSITE ABM, but focusing on applications where DTA will provide 
additional information unavailable through a static traffic assignment model. 
 

TABLE 6.1 Summary of the Activities for the Workshops 
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6.1.2 Format of the Planned Workshops 
The format of the planned workshops is as follows: 
 

• Recorded training sessions: all the workshops will be professionally recorded by 
the audio-visual facilities of the University of Maryland, College Park. The goal is 
to provide video training materials that will offer continuous staff training for the 
agencies.  
 

• Hands-on training with a selected group of agency participants: all of the 
workshops will be fully hand-on, meaning that the participants will learn how to 
use the tools with the help of an instructor during the workshops. In addition, the 
number of agency participants will be limited for more effective training.  
 

• Incremental training approach: the workshops will build the knowledge of the 
participants by starting from the most important component of integrated models 
such as DTALite, and also by starting from the most straightforward case studies.  

 
• Software and case Studies provided in advance: the MITAMS team will transfer 

the software materials and case studies to the agencies prior to the start of the 
workshops. 
 

• On-site support to flatten the learning curve: the MITAMS team will have one 
staff member on-site once a week at each agency to help support the newly trained 
staff in using the simulation tools. 

 

6.2  Supporting Documents 
 
The MITAMS team will provide a User’s Guide for each of the simulation tools to provide 
step-by-step guidance to the agency staff. The goal is to provide a go-to resource that, 
together with the recorded video material, will support the agencies in integrating these 
simulation tools as part of their internal procedures. 
 
In Table 6.2, a summary of the supporting documents for the workshops is presented. 

 
TABLE 6.2. Supporting Documents for the Simulation Tools 
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       7. Conclusions and Future Research 
 
In summary, the Maryland team has developed two integrated models: BMC InSITE-
DTALite and SILK AgBM-DTALite. The first is the result of integrating a dynamic traffic 
assignment (DTA) tool based on an existing DTALite model that covers the whole State 
of Maryland, and a state-of-the-art activity-based model (ABM), InSITE, (developed by 
Cambridge Systematics for the BMC metropolitan area). This integrated model covers 
most of the urbanized areas in Maryland and it will support long-range planning, 
transportation conformity analysis, investment programming, project prioritization, equity 
analysis, and corridor/project planning at both SHA and Baltimore- Washington MPOs. 
The second is an agent-based microsimulation travel demand model (AgBM), named SILK 
(for its emphasis on Search Information, Learning, and Knowledge in the travel decision-
making process). SILK is funded by the FHWA Exploratory Advanced Research Program 
and developed by the University of Maryland, for TSM&O, active traffic management, 
integrated corridor management, and pricing analysis along selected corridors in Maryland. 
This subarea/corridor AgBM-DTA model will be integrated into the Reliability Roadmap 
and TSM&O Strategic Plan for sustainable future applications at SHA, MPOs, and MPO 
member jurisdictions. 
 
BMC InSITE-DTALite 
This integrated model was developed as part of the MITAMS C10 project and has close 
ties with two agencies: the Maryland State Highway Administration (MD SHA) and the 
Baltimore Metropolitan Council (BMC). This integrated model is composed of the InSITE 
Activity-based Model (ABM) system, and the mesoscopic traffic simulator, DTALite. 
InSITE is an activity-based model system composed of interconnected, discrete choice 
models representing choices at distinct dimensions (e.g., travel mode, destination) that 
focus on decisions related to daily activity and mobility for a typical weekday. InSITE 
adopts the day activity-schedule approach, where a day activity schedule is defined through 
the concepts of activity pattern and activity schedule. The activity pattern defines the 
participation in activities as primary and secondary. DTALite is an open-source, light-
weight, mesoscopic dynamic traffic assignment (DTA) simulation package that 
interoperates with the Network eXplorer for Traffic Analysis (NeXTA) graphic user 
interface (GUI). It has been developed to provide transportation planners, engineers and 
researchers with a theoretically rigorous and computationally efficient traffic network 
modeling tool. DTALite adopts multiprocessor programming to exploit the parallel 
computing power available on both laptops and desktops. 
 
The primary objective of the model integration is to produce a working model of the 
Baltimore region that is disaggregate for auto travel on both the demand and supply sides. 
This model is intended to be “application ready,” meaning that it has been validated and 
includes all functionality required for typical planning analyses. Therefore, the integration 
pursued between InSITE and DTALite falls in the sequential integration paradigm. In this 
paradigm, the travel demand model (InSITE) and the DTA model (DTALite) are run in 
iterations, with a single “big loop” consisting of an iteration of the travel demand model, 
followed by a run of the DTA model. The travel demand information (e.g., agents with 



 182 

their activities and travel decisions, as well as characteristics) is passed to the DTA model 
within each big loop, and travel time information resulting from the dynamic assignment 
is passed back to the travel demand model for use as input (e.g., update activity pattern 
choices) in the next big loop. Note that DTA models themselves are run iteratively, and so 
there are several “small loops” of the DTA run within each “big loop.” A number of “big 
loops” are run until a measure of convergence is achieved, where  the change in travel 
times (or some other measure) from one big loop to the next is within a specific tolerance. 
The data exchange between InSITE and DTALite is such that an agent is preserved during 
the exchange of data from InSITE to DTALite and vice versa. Thus, the integrated InSITE-
DTALite model is fully disaggregated.  
 
Key Innovations 
Use of Simulated Values of Time: 
DTALite receives the agent-specific vector of VOTs from InSITE, in addition to other 
additional inputs. DTALite incorporates the vector of VOTs of the agent according to the 
activity purpose to be simulated, and to its respective schedule decisions (i.e., travel mode, 
origin and destination, timing decisions and others). Moreover, once the VOTs are assigned 
to the activities of an agent, the VOTs are used as input in the route choice model. The 
model is composed of path deterministic utility functions (i.e., each path available to the 
agent has a generalized travel time function), and these functions receive as input the 
assigned VOT from the vector of VOTs of an agent. The path deterministic utility functions 
determine the path choice. Furthermore, the route choice model adds the path decisions to 
each of the activities and their respective schedule decisions of each agent. This is done as 
the simulation progresses, and as the day activity schedule (i.e., list of activities and their 
respective schedule decisions) is realized for each agent. The collection (path choices by 
all the agents) of the path deterministic utility functions is used to calculate the 
deterministic dynamic user equilibrium. 
 
Intra-Household Interactions: 
InSITE allows the explicit modeling of the intra-household interactions through the day 
activity pattern model, joint tour generation model, and the joint tour models for 
destination, time of day, and travel mode choices. The day activity pattern model accounts 
for the interactions by applying the model strategically, so that the day pattern outcomes 
of a synthetic agent are conditional on the day activity pattern outcomes of previously 
simulated household members. In addition, the outcomes of previously simulated 
household members appear as explanatory variables for other household members. For 
example, children are simulated first as they are the most travel-dependent individuals. 
 
Key Challenges 
Computationally expensive: 
The integrated model takes about 1.5 to 1.8 days (InSITE ABM represents about 60 percent 
of the load) per big loop iteration. This means that 12 big loop iterations require about 18 
days in the best of circumstances, and that simultaneous calibration of demand and supply 
is infeasible due to the runtime. Also, validation of the integrated model was delayed due 
to the long runtimes. Moving forward, running the model will require redeveloping the 
InSITE ABM and adjusting DTALite to reduce the overall runtime of the integrated model.  
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Convergence Paradigm: 
A straightforward convergence paradigm was implemented based on behavioral 
assumptions of the travelers. This convergence paradigm may be updated in order to 
consider more realistic behavioral assumptions. 
 
SILK AgBM-DTALite 
A typical activity-based model plans traveler activity by assuming that travelers make 
rational choices based on perfect information. That model ceases whenever the assignment 
reaches equilibrium or the maximum number of iterations. Satisficing behavior rules are 
often used in the computational process models. However, which alternatives travelers will 
consider and when they become satisfied are controversial. Another limitation of existing 
approaches is the computational efficiency and convergence issue. The calculation of 
dynamic user equilibrium takes many iterations and is difficult to achieve in a DTA model, 
especially when the size of the network is large. Adding a set of choice models onto DTA 
models will further increase its complexity. 
 
Key Innovations 
Fully recognizing these limitations, the team is motivated to develop an innovative 
integrated modeling system that can address these issues. In this study, an agent-based 
travel behavioral model, SILK-AgBM, is integrated with a dynamic traffic simulation 
model named DTAlite. The innovations are three-fold: 
 

(1) SILK-AgBM behaviorally theorizes multidimensional learning, information, 
knowledge updating and search start/stop criteria, to explain travelers’ 
multidimensional travel behavior. These components are formulated or empirically 
modeled and integrated in a unified and coherent approach. 

(2) The integrated model employs behavioral user equilibrium (BUE) as an alternative 
to the conventional user equilibrium. The search start/stop criterion are defined in 
a way that the modeling process should eventually lead to a steady state where 
every traveler in the system will stop seeking behavioral changes. This BUE 
definition is potentially useful in large-scale model implementations because of its 
multidimensional behavioral foundation and its guaranteed convergence. 

(3) AgBM-DTALite reduces the computational burden of running large-scale 
integrated models. The production rules in AgBM and the queue-based traffic 
simulation models in DTALite are computational inexpensive. BUE also ensures a 
faster model convergence. In addition, the integrated model adopts a new software 
architecture and algorithm, design to facilitate the most efficient use of emergent 
parallel processing techniques. 

 
Key Challenges 
Extending Multi-Dimensional Behavior: 
Long-term travel behavior is not represented in the SILK AgBM-DTALite; it may be a 
venue for future research in order to enrich the behavioral representation of this integrated 
model.  
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