

STATE HIGHWAY ADMINISTRATION

SAFETY IMPACTS OF FLASHING RED ARROW PROTECTED-PERMISSIVE LEFT-TURN CONTROL

Final Summary, BRTB Traffic Signal Subcommittee Meeting March 2019

Piotr Rachtan, PE Transportation Engineer Traffic Signal Systems Team, TDSD

PROTECTED-PERMISSIVE LEFT-TURN PHASING (PPLT)

Standard "doghouse" arrangement with circular green

Balances safety and capacity

Exclusive/Permissive (EP) = Protected-Permissive (PPLT)

ADVANTAGES	DISADVANTAGES
Improve LT safety over permissive only	 Not as safe as protected phasing
Shorter cycle length Less delay, queuing, congestion, emissions, fuel consumption than protected only	 Driver confusion potential Yellow trap limits lead-lag phasing capability to T-intersections

FLASHING RED ARROW (FRA) A VARIATION OF PPLT DISPLAY

NO FUNCTIONAL OR PHASING DIFFERENCES BETWEEN FRA PPLT AND "DOGHOUSE" PPLT

HISTORY

Used in Maryland since early 1980's

- Documented at 99 intersections
- Currently in use at 91 intersections owned by:
 - MDOT SHA (81)
 - Anne Arundel County (6)
 - Baltimore City (2)
 - Montgomery County (2)

FRA SPECIFIC ADVANTAGES

- Temporary or permanent mitigation of PPLT left turn crash pattern when protected-only left-turn phasing is not feasible
- No Yellow Trap
- Allows for lead-lag and twice-per-cycle left turn operations
- Can be protected by time of day, or by conditional statements in controller logic

RESEARCH PROJECT OVERVIEW

If we convert existing left-turn display with circular green ("doghouse")to FRA – while maintaining PPLT phasing – how will it affect the crashes?

To date, no rigorous research has been found in the literature body to quantify the safety benefits of FRA PPLT compared to PPLT with circular green.

Our methodology fits in HSM and FHWA guidelines for Crash Modification Factor (CMF) development. Results are locally calibrated, remain robust to variations in before-after traffic volumes, and account for availability of crash data at each site.

STUDY INTERSECTIONS

23 FRA-treated intersections with the following characteristics were selected for the study:

- 11 counties in six SHA Districts
- FRA installations between 2001-2016
- 3- or 4-leg configurations
- Main road speed limit: 30-55 mph
- Main road AADT: 17000-51000
- Number of opposing thru lanes 1-3
- Crash Data:
 - 2 to 4 Years for "Before" condition
 - 9 months to 8 years for "After" condition

STUDY INTERSECTIONS - DETAILS

									After/Before Crash Ratios					
			Year FRA	Speed Limit	Opposing Thru	Major Road	Crash (Yea	Data Irs)	Left-turn		Rear-End		Total	
No.	Intersection	County	Installed	(mph)	Lanes	AADT	Before	After	All	Injury	All	Injury	All	Injury
1	MD 170 & Amtrak Way	AA	2005	45	2	45394	3	6	0.21	0.13	1.38	3.5	0.21	0.13
2	MD 173 & Brandon Shore Rd	AA	2001	50	2	27221	3	6	0.2	0.18	1.5	1.5	0.2	0.18
3	MD 150 & Kingston Rd	BL	2012	35	2	38571	3	4	0.23	0.3	3.75	5.25	0.23	0.3
4	US 1 & Mt Vista Rd.	BL	2013	50	2	22651	3	3	0.83	0.33	1.3	0.7	0.83	0.33
5	MD 140 & Valley Centre Dr	BL	2016	40	2	39601	4	0.75	1.33	0.8	0	0	1.33	0.8
6	MD 140 & Walmart	BL	2016	40	2	39601	4	0.75	4	1.33	2	0	4	1.33
7	MD 404 & Deep Shore Rd	CL	2015	50	2	24268	3	2	0.25	0.17	0.75	0	0.25	0.17
8	MD 404 & MD 328	CL	2015	55	2	28299	3	2	0.9	0.64	1.5	0	0.9	0.64
9	MD 26 & Johnsville Rd	CR	2012	45	2	25970	3	4	0.94	0.88	1.13	1	0.94	0.88
10	MD 27 & Twin Arch Rd	CR	2016	50	2	20970	3	2	0.54	0.8	1	0.21	0.54	0.8
11	US 40 & MD 7C/Belvidere Rd	CC	2009	55	2	25151	3	6	1.18	1.03	1	0.67	1.18	1.03
12	MD 85 & Guilford Rd	FR	2007	40	2	26071	3	8	0.56	0.38	0.38	0	0.56	0.38
13	MD 103 & Brightfield Rd	HW	2010	40	1	12586	3	6	0.63	0.3	0.67	0	0.63	0.3
14	MD 108 & Lark Brown Rd	HW	2012	45	2	21300	3	4	0.14	0.2	0.75	0.5	0.14	0.2
15	US 40 & Marriottsville Rd	HW	2008	55	2	17000	3	7	0.66	0.97	1.29	0.29	0.66	0.97
16	US 1 & Guilford Rd	HW	2011	50	2	38190	3	6	0.92	2.5	3	1.5	0.92	2.5
17	MD 117 & MD 118	MG	2009	30	2	24972	3	6	0.75	0.44	1.5	1	0.75	0.44
18	MD 28 & MD 182	MG	2012	45	2	15700	3	4	0.75	0.78	0.3	0.38	0.75	0.78
19	MD 450 & I-495 SB Ramp	PG	2015	35	2	51182	3	7	0.29	0.18	0.21	0	0.29	0.18
20	MD 8 & MD 18	QA	2009	40	2	15873	3	7	0.48	1.37	0	0	0.48	1.37
21	US 50 & Dutchmans Ln	ТВ	2009	45	2	35812	2	3	0.44	0.48	1.73	1.2	0.44	0.48
22	US 50 & MD 328	TB	2012	35	3	35812	3	4	0.38	1.13	0.42	0.26	0.38	1.13
23	US 50 & MD 331	ТВ	2012	35	3	35812	3	4	0.71	0.89	1.13	0.75	0.71	0.89

METHODOLOGY

Estimation of the Safety Performance Function (SPF) parameters:

- A control sample of 20 signalized intersections with "traditional" PPLT was established.
- 6 years of crash data and corresponding traffic volume records.
- The left-turn crashes and total crashes had FRA control not been implemented were estimated as a function of traffic volume using the following equations:

Crash Type Specific SPF Parameters

	Crash Model	Parameter	β	SE	P-Value
		Intercept (a)	-9.293	1.99	<.0001
	Left-turn	Ln AADT Major Road Left-turn	0.6359	0.194	0.001
(a) SPF	Crashes	Ln AADT Minor Road	0.5316	0.258	0.0392
parameter		Over-Dispersion (k)	0.2021		
estimates,					
crashes (all		Intercept (a)	-6.984	1.991	0.0005
severities)	Total	Ln AADT Major Road	0.4944	0.169	0.0035
	Crashes	Ln AADT Minor Road	0.4076	0.127	0.0013
		Over-Dispersion (k)	0.1429		
	Left-turn	Intercept (a)	-6.11	2.137	0.0042
(b) SPF	Crashes	Ln AADT Major Road Left-turn	0.8385	0.277	0.0025
parameter					
estimates,		Intercept (a)	-12.28	3.067	<.0001
injury	njury Total	Ln AADT Major Road	0.6809	0.26	0.0087
crashes	Crashes	Ln AADT Minor Road	0.7571	0.195	0.0001
		Over-Dispersion (k)	0.498		

Estimated Left-turn Crashes = exp[a + β_1 * ln(AADT _{Major Road Left-turn}) + β_2 * ln(AADT _{Minor Road})]

Estimated Total Crashes = exp[a + β_1 * ln(AADT _{Major Road}) + β_2 * ln(AADT _{Minor Road})]

METHODOLOGY (CONTINUED)

Selected steps in the Empirical Bayes estimation procedure:

• Compute the number of crashes that would have taken place in the after period had FRA control not been implemented:

 $B=m_{a}*y_{a}$ where, y_{a} =number of years in the after period

• Compute the variance for the number of crashes that would have taken place had FRA control not been implemented:

 $Var(B) = m_b * \frac{(R * y_a)^2}{\left[\left(\frac{k}{P_a} \right) + y_b \right]}$

• Determine the crash-type specific CMFs and the variance in the CMF value $[\Sigma A]$

$$CMF = \frac{\left[\frac{\sum A}{\sum B}\right]}{\left[1 + \frac{\operatorname{var} \sum B}{(\sum B)^{2}}\right]}$$
$$\operatorname{var}(CMF) = \frac{\left[\left(\frac{\operatorname{var} \sum A}{(\sum A)^{2}}\right) + \left(\frac{\operatorname{var} \sum B}{(\sum B)^{2}}\right)\right]}{\left[1 + \frac{\operatorname{var} \sum B}{(\sum B)^{2}}\right]^{2}}$$

A resulting CMF value of less than 1 indicates the modification reduced the crash frequency at an intersection.

RESULTS

Crash Modification Factor (CMF): unbiased estimate of index of effectiveness. It represents a factor of change in crash frequency resulting from a countermeasure.

Here, the treatment is changing the display on PPLT from 5-section signal head arrangement with circular green to PPLT on 3-section signal head with Flashing Red Arrow.

	Left-turn	Left-turn Injury	Total	Total Injury
CMF	0.53	0.63	0.75	0.71
Standard Error	0.054	0.06	0.047	0.05

DISCUSSION

- Overall, the results show a 47% expected decrease in left-turn crash frequency and 25% decrease in the total crash frequency when PPLT with circular green is converted to PPLT with FRA.
- Left-turn injury crashes drop by 37%, and total injury crashes decrease 29%
- General trend of significant crash reduction is not disrupted by FRA installations with short "after" crash history. Recent FRA deployments will be monitored to fully evaluate the long-term FRA impact there.
- AADT increase does not seem to have a negative impact on the number of crashes. Intersections with the highest AADT are among those with most significant safety improvement.
- Posted speed does not seem to have a distinguishable effect on safety (for example, some of the worst and best performing intersections have same posted speed and similar AADT)
- Location (county) of a site does not reveal an effect on safety pattern

SUMMARY

- Application of FRA PPLT alleviates a LT safety problem while maintaining operational efficiency of a traditional PPLT display with circular green
- When conversion to fully protected phasing not feasible or easily attainable, FRA can be used as a temporary or a permanent countermeasure
- Allows for greater flexibility in phase sequence than doghouse PPLT: can use FRA with lead-lag or twice-per-cycle LT phasing
- Restricting LT operations to protected-only by time of day possible with FRA
- To address unique LT safety problems, FRA display allows for cycle-by-cycle suppression of the permissive LT with advanced controller logic

QUESTIONS?

Have a detailed question? Need the full report?

Please contact:

Piotr Rachtan prachtan@sha.state.md.us 410-787-4090

