2050 & 2100 Sea Level Change

Eastern Shore Regional GIS Cooperative – Salisbury University

<table>
<thead>
<tr>
<th>County</th>
<th>Tidal Station</th>
<th>2050 MSL</th>
<th>2050 MHWW</th>
<th>2100 MSL</th>
<th>2100 MHWW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allegany</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anne Arundel</td>
<td>Annapolis</td>
<td>2.08</td>
<td>2.79</td>
<td>5.7</td>
<td>6.41</td>
</tr>
<tr>
<td>Baltimore</td>
<td>Baltimore</td>
<td>2.01</td>
<td>2.87</td>
<td>5.59</td>
<td>6.45</td>
</tr>
<tr>
<td>Baltimore City</td>
<td>Baltimore</td>
<td>2.01</td>
<td>2.87</td>
<td>5.59</td>
<td>6.45</td>
</tr>
<tr>
<td>Calvert</td>
<td>Solomons Island</td>
<td>2.1</td>
<td>2.82</td>
<td>5.76</td>
<td>6.48</td>
</tr>
<tr>
<td>Caroline</td>
<td>Cambridge</td>
<td>2.11</td>
<td>3.13</td>
<td>5.78</td>
<td>6.8</td>
</tr>
<tr>
<td>Carroll</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cecil</td>
<td>Chesapeake City</td>
<td>1.98</td>
<td>3.63</td>
<td>5.56</td>
<td>7.21</td>
</tr>
<tr>
<td>Charles</td>
<td>Washington DC</td>
<td>2.21</td>
<td>3.83</td>
<td>5.78</td>
<td>7.4</td>
</tr>
<tr>
<td>Dorchester</td>
<td>Cambridge</td>
<td>2.11</td>
<td>3.13</td>
<td>5.78</td>
<td>6.8</td>
</tr>
<tr>
<td>Frederick</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Garrett</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Harford</td>
<td>Baltimore</td>
<td>2.01</td>
<td>2.87</td>
<td>5.59</td>
<td>6.45</td>
</tr>
<tr>
<td>Howard</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kent</td>
<td>Annapolis</td>
<td>2.08</td>
<td>2.79</td>
<td>5.7</td>
<td>6.41</td>
</tr>
<tr>
<td>Montgomery</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prince Georges</td>
<td>Washington DC</td>
<td>2.21</td>
<td>3.83</td>
<td>5.78</td>
<td>7.4</td>
</tr>
<tr>
<td>Queen Anne</td>
<td>Annapolis</td>
<td>2.08</td>
<td>2.79</td>
<td>5.7</td>
<td>6.41</td>
</tr>
<tr>
<td>Somerset</td>
<td>Cambridge</td>
<td>2.11</td>
<td>3.13</td>
<td>5.78</td>
<td>6.8</td>
</tr>
<tr>
<td>St. Mary's</td>
<td>Solomons Island</td>
<td>2.1</td>
<td>2.82</td>
<td>5.76</td>
<td>6.48</td>
</tr>
<tr>
<td>Talbot</td>
<td>Cambridge</td>
<td>2.11</td>
<td>3.13</td>
<td>5.78</td>
<td>6.8</td>
</tr>
<tr>
<td>Washington</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wicomico</td>
<td>Cambridge</td>
<td>2.11</td>
<td>3.13</td>
<td>5.78</td>
<td>6.8</td>
</tr>
<tr>
<td>Worcester</td>
<td>Ocean City</td>
<td>2.06</td>
<td>3.25</td>
<td>5.86</td>
<td>7.05</td>
</tr>
</tbody>
</table>

Methodology – USACE: Sea-Level Change Considerations for Civil Works Programs, October 2013
Sea Level Change 2050 with 10-yr Storm
Annapolis
Sea Level Change 2050 with 10-yr Storm
Annapolis
100-Year Storm in 2050 & 2100 Kent Narrows
Evaluation of High Scoring HVI Road Segments

Queen Anne’s County:
The Effects of Build Scenario 1 on Total Vehicles Traveled per 24 Hours (VEHS)

Legend

Critical Infrastructures and Roads VEHS
(Deviations from Standard Deviation)

-1.002315 - 0.901538
-0.901538 - 0.708768
-0.708737 - 0.421804
-0.421803 - 0.120786
No Change
-0.120786 - 2.987743
2.987743 - 6.136005
6.136005 - 9.224301
9.224302 - 12.694056
Removed

Greatest Decrease in VEHS

Maryland Department of Transportation
State Highway Administration
Percentage of Traversable Trace Paths in AA County with MSL SLC

![Graph showing the percentage of locotions that are reachable under different flooding scenarios and years. The x-axis represents no flooding, 10% chance, 4% chance, 2% chance, 1% chance, and 0.2% chance, while the y-axis represents the percentage of locotions that are reachable. The graph shows a decrease in reachable locotions as the chance of flooding increases. The data is represented for the years 2015, 2050, and 2100, with each year having a distinct line.](image-url)
The purpose of MDOT SHA’s proposed project for this pilot is to develop and integrate a repeatable framework for leveraging current and future extreme weather and climate change data with the transportation asset management processes currently in place.

MDOT SHA Objectives

- Develop proxy indicators to identify and address extreme weather and climate-related risks to Maryland’s critical assets
- Integrate climate-related risks and data into the TAMP processes
- Develop and modify existing lifecycle management plans to reflect climate-related data and risks
- Document the new processes
Questions

Elizabeth Habic
Office of Planning and Preliminary Engineering
ehabic@sha.state.md.us
410-545-8563

Climate Change Adaptation Plan with Detailed Vulnerability Assessment, October 2014