MARYLAND DEPARTMENT OF TRANSPORTATION

STATE HIGHWAY ADMINISTRATION

RELIABILITY FORECASTING

FOR PM3 TARGET SETTING

August 7, 2018

Presented to:

Baltimore Metropolitan Council

Subrat Mahapatra, MDOT SHA

Acknowledgments

High Street Consulting Mark Egge

Data Scientist

Senior Planner

UMD MAP-21 Tool Team

MPO Partners BMC, MWCOG, WILMAPCO

PM3 BASELINE SCORES

Interstate Reliability	Non-Interstate NHS Reliability				
Metric: Level of Travel Time Reliability	Metric: Level of Travel Time Reliability				
$\frac{80th \ Percentile \ TT}{50th \ Percentile \ TT} < 1.5 = Reliable$	$\frac{80th \ Percentile \ TT}{50th \ Percentile \ TT} < 1.5 = Reliable$				
Measure: Traveler-weighted Portion of Interstate NHS Segments that are Reliable	Measure: Traveler–weighted Portion of Non–Interstate NHS Segments that are Reliable				
Freight Movement					

Metric: Truck Travel Time Reliability

95th Percentile TT

50th Percentile TT

Measure: Distanced-weighted Average of All Interstate Segments

FORECASTING FUTURE RELIABILITY PERFORMANCE

FORECASTING METHODOLOGY

1. SETUP

Calculate current volume and capacity (based on best available data)

2. MODEL FITTING

Fit statistical model, using up associating LOTTR / TTTR with capacity volume, capacity, and roadway attributes

3. UPDATES

- Forecast future volume based on growth rates
- Update future capacity based on planned projects

4. FORECASTING

Forecast future LOTTR / TTTR using updated volume and capacity

DATA TRANSFORMATION AND MODELING

- LOTTR / TTTR Data is left-bounded at 1 and right-skewed
 - Subtract 1 from LOTTR / TTTR and Log Transform
- Models have limited overall explanatory power (~25% of total variation in segment level scores), but highly significant coefficient estimates (used for forecasting)

LOTTR Model (Log LOTTR)

Coefficients	Estimate St	d. Error
(Intercept)	-0.623	0.022
cars (thousands)	0.028	0.000
capacity (thousands)	-0.017	0.000

All estimates statistically significant at p < 0.001, R² 0.23

TTTR Model (Log TTTR)

Coefficients	Estimate	Std. Error
(Intercept)	-2.02	0.089
Volume / Capacity Ratio	2.82	0.221
Location: Urban	0.67	0.093

All estimates statistically significant at p < 0.001, R² 0.26

UPDATE FUTURE VOLUME

• Grow Traffic Volume by Geometric Growth Rates

Growth Rate	Directional Miles (Statewide)	Percent of System (Statewide)
0-1%	1927	37%
1 – 2%	1377	28%
2 – 3%	909	18%
3 – 4%	918	18%

UPDATE FUTURE CAPACITY

- 1) Identify Capacity Enhancing Projects
- 2) Conflate project boundaries to TMC segments
- Add+1 Lane within Project Boundaries After Project Completion Date
- Capacity Projects (Statewide): 48
 - Lane-Miles (2017): 10,966
 - Lane-Miles (2021): 11,127
- Signal Upgrade Locations: 14
 - ITS Affected Directional Miles: 61.5 (LOTTR reduction of 0.15)

APPLY STATISTICAL MODEL

Using our previously fit LOTTR and TTTR models:

- 1. Predict Current Performance
- 2. Predict Future Performance Based On Future Volume, Future Capacity
- 3. Update Current Observed Metric Value by Predicted *Difference*
- 4. Aggregate to Performance Measure Score

INTERSTATE RELIABILITY

STATE HIGHWAY ADMINISTRATION

Higher \rightarrow More Reliable

Maryland Statewide Interstate Reliability

	Baseline (2017)	2018	Two Year Performance (2019)	2020	Four Year Performance (2021)
No Build High Growth	71.5	71.5	70.9	70.4	69.4
Build High Growth	71.5	71.5	71.5	71.0	70.0
No Build	71.5	71.5	71.5	71.5	71.5
Build	71.5	71.5	72.1	72.1	72.1

NON-INTERSTATE RELIABILITY

Higher \rightarrow More Reliable

Maryland Statewide Non-Interstate Reliability

	Baseline (2017)	2018	Two Year Performance (2019)	2020	Four Year Performance (2021)
No Build High Growth	82.0	81.9	81.6	81.2	80.6
Build High Growth	82.0	81.9	81.6	81.4	80.8
No Build	82.0	82.0	81.9	81.7	81.4
Build	82.0	82.0	81.9	81.9	81.7

TRUCK TRAVEL TIME RELIABILITY

Higher → Less Reliable

	Baseline (2017)	2018	Two Year Performance (2019)	2020	Four Year Performance (2021)
No Build High Growth	1.87	1.88	1.89	1.89	1.90
Build High Growth	1.87	1.88	1.88	1.89	1.89
No Build	1.87	1.87	1.88	1.88	1.89
Build	1.87	1.87	1.87	1.87	1.88

STATE HIGHWAY ADMINISTRATION

RELATED ONGOING/ UPCOMING EFFORTS AT MDOT SHA

MDOT TRAFFIC RELIEF PLAN (TRP) INITIATIVES

- I-695 TSMO PROJECT
- SMART SIGNAL CORRIDORS
- TSM&O EFFORTS

MDOT SHA TSM&O Strategic Plan

STATE HIGHWAY ADMINISTRATION

Integrated approach for planning, operations, and maintenance to improve the security, safety, and reliability of our transportation system.

TSM&O Strategic Plan Highlights

STATE HIGHWAY ADMINISTRATION

- Summarizes a business case for TSM&O
- Establishes mission, vision, goals, objectives and performance measures for TSM&O within MDOT/SHA
- Identifies strategies and projects required to implement TSM&O
- □ Recommends resource needs to carry out plan

Ongoing TSM&O Initiatives

STATE HIGHWAY ADMINISTRATION

16

TSM&O Master Plan

STATE HIGHWAY ADMINISTRATION

RITIS

Crashes

- Incidents
- Closures

• AADT

- PTI/TTI
- Bottlenecks

MARYLAND

- Existing Project Lists
- Funded CTP/ TIP
- Unfunded CLRP/ HNI

TSM&O Project Planning

- Benefit/ Cost & LCAA
- Recommended Concept(s)
- Project Delivery Options
- Funding/ Phasing
- Design
- Implementation

STATE HIGHWAY

ADMINISTRATION

Logical Segments

- Existing Conditions
- Purpose & Needs
- Feasible Concepts
- Traffic Analysis/ Benefits
- Planning level Costs

Integrated Corridor Management/ Active Traffic Management Projects

STATE HIGHWAY ADMINISTRATION

- Emphasis on Innovations & Technology Solutions
- Performance based Practical Transportation
- Innovative Procurement Strategies Progressive Design Build
- Connected Automated Transportation

UPCOMING PM3 EFFORTS

STATE HIGHWAY ADMINISTRATION

- Refine the Reliability Models
- Identify UNRELIABLE SEGMENTS and Causes of Unreliability
- Identify Mitigation Strategies
 - TSM&O Improvements
 - Capital Improvements
- Coordinate efforts with MPO, agencies and local partners
- Communication of Results/ Outreach

MARYLAND DEPARTMENT OF TRANSPORTATION

STATE HIGHWAY ADMINISTRATION

CONTACT INFORMATION

Subrat Mahapatra

- Chief, Innovative Performance Planning Division
- MDOT State Highway Administration
- 410-545-5649
- smahapatra@sha.state.md.us

Meredith Hill

Performance Planner

Innovative Performance Planning Division MDOT State Highway Administration 410-545-8739

mhill8@sha.state.md.us