OPAC Adaptive Engine
Pinellas County Deployment

Farhad Pooran
Telvent Transportation North America

Baltimore Regional Traffic Signal Forum
May 25, 2011
Presentation Agenda

- Adaptive control systems - expected benefits
- An overview of OPAC
- Case Study – Pinellas County Project
Expected Benefits

- Mitigate effects of the capacity reduction through efficient use of the existing capacity (Proactive traffic management)
- Adjusts to traffic fluctuations and surges
- Continuously adjust signal timing parameters
- Reduce stops/delay, fuel consumption, and emissions
Adaptability - Cycle Optimization

Mill Plain Blvd / 104th-105th Ave

Pretimed Cycle Length (Sec)

OPAC Cycle Length (Sec)

Vehicle Counts

Time

90 100 110 120 130 140 150 160 170 180 190 200

Adaptability - Cycle Optimization

Time of Day

Cycle (sec)

veh/hr

TBC
OPAC
Total Volume
Adaptive Control Systems Design

- Fully Adaptive vs. Partially Adaptive
- Centralized vs. Distributed
- Proactive vs. Reactive

Traffic Responsive (TRSP) is not an adaptive system
OPAC Adaptive Control

- Optimized Policies for Adaptive Control (OPAC)
- A fully adaptive, proactive, and distributed real time traffic control system
- Deployed as part of FHWA 1992-1995 RT-TRACS program
OPAC Fundamental Features

- Optimization of any or all phase splits designed to minimize total intersection delay and/or stops
- Support for phase skipping in the absence of demand
- Multiple sets of configuration parameters for customizing the resulting timing to weight certain movements for special circumstances or by time of day
- Configurable to respond to changes in left turn lead/lag phasing by time of day
- Special considerations for phase timing in the presence of congestion (high detector occupancy)
Control Layers in OPAC

- **Network Synchronization Layer** (cycle optimization)
- **Coordination Layer** (offsets optimization)
- **Local Control Layer** (splits optimization)

- **Split** – Distributed to each intersection
- **Offset** – Distributed to each intersection
- **Cycle Length** – Section-wide; calculated at central
 - Background cycle (Dominant intersections)
Performance Measures

- Real-time estimates of phase-specific parameters such as queue length, speed, travel-time from detectors to standing queues, delay and stops
- Logged measures of effectiveness, including average cycle lengths, vehicle counts by phase, and average phase green times and estimated speeds.
Data Requirements

- Upstream detectors on each lane
- Once/sec vehicle count and occupancy data
Hardware Requirement

- Advanced traffic controllers, NTCIP (e.g., 2070 or NEMA TS-2)
- Communication media: copper, fiber, wireless
- Serial or Ethernet communications
- Local processor board (Distributed system)
Integration with Current Infrastructure – Traffic Management System
Case Study – City of Clearwater, Pinellas County, FL

- 25 intersections along US-19 Corridor
- 29 intersection along McMullen Booth Corridor
- 7 intersections along 49th St (to be installed this year)

- Initial Deployment: 2006
- Installed as part of FHWA 1996 RT-TRACS project
- Currently runs OPAC and RHODES under MIST platform
Project Area
Communications

- **Communications**
 - Initial deployment: serial comm
 - Communication media: fiber
 - Converted to Ethernet based comm since 2010

- **Detections Technologies:**
 - Magnetic loops, RTMS, Sensys

- **Signal System Platform**
 - MIST traffic management platform
 - 2070 controllers with Econolite ASC/3-2070 firmware
Success of the system *

- Independent before/after study to determine the RT-TRACS software operation versus traditional time-of-day signal plans started October 2006 and was completed in 2007.
- Study determined that OPAC US19 travel times were reduced by an average of 7.5%, with peak travel times dropping 25%.
- The results determined there was over $1 million in annual fuel savings alone as a result of the new system, and a benefit/cost ratio of approximately 7:1.

* Courtesy of Pinellas County Public Works
Success of the system *(don’t stop there!)*

- 2008 changes to adaptive parameters resulted in an additional reduction of 10%, on average, to the travel times across the corridors

What about safety?

- Total accidents are down by 30%, pre-adaptive year crash data vs. post-adaptive year crash data
 - Rear-end accidents decreased by 18%
 - Serious injuries have been reduced by 40%

Courtesy of Pinellas County Public Works
Green Corridors: Adaptive Control and Air Quality

- Traditional approach: travel time & stops/delays
- Environmental evaluation: Air quality parameters
Initial Results: OPAC Adaptive vs. TOD
Particulate Matter (PM)

Avg Weekly Improvement: 17.56%
Initial Results: OPAC Adaptive vs. TOD
Carbon Monoxide (CO)

CO Emission - Weekly

Avg Weekly Improvement: 11.04%
Conclusions

- Growing interest in deployment of adaptive signal systems
- Proven technologies for effective arterial corridor management
- Enhanced features utilizing on going advancements in communication systems, detection technologies and traffic control devices
- “Given the appropriate technical staff and an eagerness to learn, one cannot deny the benefits adaptive signal control software can provide.”

Pinellas County Public Works
Thank You

Farhad Pooran, Ph.D., P.E.
Vice President, Engineering
Telvent Transportation North America
Rockville, Maryland
Phone: +01 301 354 1376
E-mail: farhad.pooran@telvent.com